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1. INTRODUCTION 

Proposition 1 
5 4( ) ( )A A rank A rank E A n      

Proof: Since the elementary transformation of a matrix does not change the rank of the matrix, the 

following equality can be obtained. 

5 5

4 4 4 4 4

0 0

0

A A A A A A A A
rank rank rank rank rank

E A A E A A E A E E

         
           

          

Therefore 
5 4( ) ( )A A rank A rank E A n      

Proposition 2 
5 4( ) ( )a bA A rank A rank E A n     , ,a b N    

Proof: On the one hand, by 
5A A , we have 

4( ) 0A E A  , So for every positive integer, we have 

4( ) 0aA E A  .With the help of the property of matrix multiplication operation, we can get 

4( ) ( )arank A rank E A n   . 

On the other hand, The minimum polynomial of matrix A  obtained from 
5A A  is the factor of 

polynomial 
5  . Therefore, the minimum polynomial of A has no multiple roots, so A  can be 

diagonalized. 

For every positive integer ,a b , there exists an invertible matrix P  such that the following equation 

holds. 

3 1 1 3 1 1 1 3[ ( ) ] ( ) ( ) [ ( ) ]a b a b a bP A E A P PA P P E A P PAP E PAP           
 

It is not hard to get 
4[ ( ) ]a brank A E A n   .  

Abstract: The equality of rank a fifth-idempotent matrix is established by means of elementary 

transformation and properties of idempotent matrix. 
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Hence it follows that 
4 4[ ( ) ] ( ) ( )a b a bn rank A E A rank A rank E A n        

Therefore 
4( ) ( )a brank A rank E A n    

Proposition 3 
5 4 3 4( ) ( ) ( )A A rank A rank E A A n rank A        

Proof  The following equation can be obtained from elementary transformation.  

4 3

4 3 4 3

5 4 4 3 5 4 0

0 0

A A A A A
rank rank rank

E A A A E A A A E

A A A A A A A A
rank rank

E E

    
      

        

       
    

   

 

Substituting 
5A A , 

5 4 40 0

0 0

A A A A
rank rank

E E

    
   

   

,  

Therefore 

4

4 3

0

0

A A
rank rank

E A A E

  
   

    
.  

That is to say
4 3 4( ) ( ) ( )rank A rank E A A n rank A      

Conversely, it does not necessarily hold true. For example, (1 3)A E 

4 3 4( ) ( ) 2 ( )rank A rank E A A n n rank A      ,  but obviousiy there are 
5A A . 

Proposition 4 
5 4 3 4 4( ) ( ) ( )A A rank E A A rank A rank E A        

Since 5A A , from proposition 1 and 2, 
4( ) ( )rank A rank E A n   ,

4 3 4( ) ( ) ( )rank A rank E A A n rank A     . 

So we can get 
4 3 4 4( ) ( ) ( )rank E A A rank A rank E A     . 

But the same, based on
4 3 4 4( ) ( ) ( )rank E A A rank A rank E A      , we can not get 

5A A . 

For example,  

1 1 0

0 0 1

0 0 0

A

 
 


 
  

3 4

1 1 1

0 0 0

0 0 0

A A

 
 

 
 
     

4 3 4 4( ) 3 ( ) ( )rank E A A rank A rank E A     

 

But 
5

1 1 1 1 1 0

0 0 0 0 0 1

0 0 0 0 0 0

A A

   
   

  
   
      

 

According to the definition of the fifth-idempotent matrix and its operation, the following properties 

of the fifth-idempotent matrix can be given. 
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Proposition 4  

(1)If the fifth-idempotent matrices ,A B  are commutative, then AB  is also a fifth-idempotent 

matrix. 

(2) If A  is a fifth-idempotent matrix, then 
4A  is an idempotent matrix. 

(3) If A  is a fifth-idempotent matrix, 
4E A  is an idempotent matrix. 

(4) If A  is a fifth-idempotent matrix, then for any positive integer, there are 

2

3

, 4 | 1

,4 | 2

,4 | 3

,4

n

A n

A A n

A n

A n







 







 

Proposition 5 If ,A B  are all fifth-idempotent matrices, the following equality is satisfied 

(1)

4 4 4 4

4 4 4 4

4 4
( )

0 0

A B B A
rank A B rank rankB rank rankA

B A

   
       

   
 

(2)
4 4 4 4 4 4 4 4 4 4( ) [ , ] [ , ]rank A B rank A A B B rank B B A A      

(3)
4 4 4 4 4 4 4 4 4 4 4( ) ( )rank A B rank A A B B A B A B rankB       

(4)
4 4 4 4 4 4 4 4 4 4 4( ) ( )rank A B rank A A B B A A B A rankA     

 

(5)

4 4

4 4 4 4

4 4

0
( )

0

A B
rank A B rank rank A B

B A

 
      

   

(6)If 1 2,a a are two non-zero real numbers and 1 2 0a a  , then 

4 4 4 4

1 2( ) ( )rank a A a B rank A B   .
 

Theorem 1 n nA P  ,  ( ), ( )f x g x P x  is a polynomial with any number greater than 1. Let 

( ) ( ( ), ( ))d x f x g x , ( ) [ ( ), ( )]m x f x g x , then  

( ) ( ) ( ) ( )rankf A rankg A rankd A rankm A   . 

Corollary n nA P  ,  ( )f x P x  is a polynomial with any number greater than 1. Let

5( ) ( ( ), )d x f x x x  and
5( ) [ ( ), ]m x f x x x  , then  

5( ) ( ) ( ) ( )rankf A rank A A rankd A rankm A    .
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With the help of corollary we can get if A is a fifth-idempotent matrix, then

( ) ( ) ( )rankf A rankd A rankm A  . 

This corollary shows that there are also many rank eigenvalues of ffifth-idempotent matrices.
 

Theorem 2 

n nA P  , 1t N   , 
4 5( ) ( ) ( ) ( )t t trank A rank A A rank A rank A A    

.
 

Proof:  When t = 1, the equation clearly holds. 

Let 1t  , ( ) tf x x , 
5( )g x x x  , By simple calculation we get ( ( ), ( ))f x g x x

4[ ( ), ( )] t tf x g x x x   . By the above we can get the following equation.  

4 5( ) ( ) ( ) ( )t t trank A rank A A rank A rank A A      
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