

On the Equality of Rank of a Fourth-Idempotent Matrix

Lin Deng^{1*}, Feng Zhang², Jinli Xu³

Department of mathematics, Northeast Forestry University, Harbin, China, 150040

***Corresponding Author:** *Lin Deng, Depar tment of mathematics, Northeast Forestry University, Harbin, China, 150040*

Abstract: The equality of rank a fourth-idempotent matrix is established by means of elementary transformation and properties of idempotent matrix.

Keywords: fourth-idempotent matrix, rank, equality.

1. INTRODUCTION

Proposition 1 $A^4 = A \Leftrightarrow rank(A) + rank(E - A^3) = n$

Proof: Since the elementary transformation of a matrix does not change the rank of the matrix, the following equality can be obtained.

$$rank \begin{bmatrix} A \\ E - A^{3} \end{bmatrix} = rank \begin{bmatrix} A \\ A^{3} \\ E - A^{3} \end{bmatrix} = rank \begin{bmatrix} A & A \\ A^{3} \\ E \end{bmatrix} = rank \begin{bmatrix} A - A^{4} & 0 \\ A^{3} \\ E \end{bmatrix} = rank \begin{bmatrix} A - A^{4} & 0 \\ 0 \\ E \end{bmatrix}$$

Therefore $A^4 = A \Leftrightarrow rank(A) + rank(E - A^3) = n$

Proposition 2 $A^4 = A \Longrightarrow rank(A^a) + rank(E - A^3)^b = n$

Proof: On the one hand, by $A^4 = A$, we have $A(E - A^3) = 0$, So for every positive integer, we have $A^a(E - A^3) = 0$. With the help of the property of matrix multiplication operation, we can get $rank(A^a) + rank(E - A^3) \le n$.

On the other hand, The minimum polynomial of matrix A obtained from $A^4 = A$ is the factor of polynomial $\lambda^4 - \lambda$. Therefore, the minimum polynomial of A has no multiple roots, so A can be diagonalized.

For every positive integer *a*,*b*, there exists an invertible matrix *P* such that the following equation holds. $P[A^a + (E - A^3)^b]P^{-1} = PA^aP^{-1} + P(E - A^3)^bP^{-1} = (PAP^{-1})^a + [E - (PAP^{-1})^3]^b$

It is not hard to get $rank[A^a + (E - A^3)^b] = n$. Hence it follows that

 $n = rank[A^{a} + (E - A^{3})^{b}] \le rank(A^{a}) + rank(E - A^{3})^{b} \le n$

Therefore $rank(A^{a}) + rank(E - A^{3})^{b} = n$

Conversely, it does not necessarily hold true. Here's an example. $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 \\ & 1 \end{bmatrix}$, when a = 4, b = 4,

 $rank(A^{a}) + rank(E - A^{3})^{b} = 3$, but $A^{4} \neq A$

Proposition 3 $A^4 = A \Rightarrow rank(A) + rank(E - A^3 + A^2) = n + rank(A^3)$

Proof The following equation can be obtained from elementary transformation.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

According to the definition of the fourth-idempotent matrix and its operation, the following properties of the fourth-idempotent matrix can be given.

Proposition 4

(1) If the fourth-idempotent matrices A, B are commutative, then AB is also a fourth-idempotent matrix.

(2) If A is a fourth-idempotent matrix, then A^3 is an idempotent matrix.

(3) If A is a fourth-idempotent matrix, $E - A^3$ is an idempotent matrix.

(4) If A is a fourth-idempotent matrix, then for any positive integer, there are $A^n = \begin{cases} A, 3 \mid n-1 \\ A^2, 3 \mid n-2 \\ A^3, 3 \mid n \end{cases}$

Proposition 5 If A, B are all fourth-idempotent matrices, the following equality is satisfied

1)
$$rank(A^{3} + B^{3}) = rank \begin{bmatrix} A^{3} & B^{3} \\ B^{3} & 0 \end{bmatrix} - rankB^{3} = rank \begin{bmatrix} B^{3} & A^{3} \\ A^{3} & 0 \end{bmatrix} - rankA^{3}$$

(2) $rank(A^{3} + B^{3}) = rank[A^{3} - A^{3}B^{3}, B^{3}] = rank[B^{3} - B^{3}A^{3}, A^{3}]$
(3) $rank(A^{3} + B^{3}) = rank(A^{3} - A^{3}B^{3} - B^{3}A^{3} + B^{3}A^{3}B^{3}) + rankB^{3}$
(4) $rank(A^{3} + B^{3}) = rank(A^{3} - A^{3}B^{3} - B^{3}A^{3} + A^{3}B^{3}A^{3}) + rankA^{3}$

(5)
$$rank(A^3 + B^3) = rank \begin{bmatrix} A^3 & B^3 & 0 \\ B^3 & 0 & A^3 \end{bmatrix} = rank \begin{bmatrix} A^3 & B^3 \end{bmatrix}$$

(6) If a_1, a_2 are two non-zero real numbers and $a_1 + a_2 \neq 0$, then $rank(a_1A^3 + a_2B^3) = rank(A^3 + B^3)$.

Theorem 1 $A \in P^{n \times n}$, $f(x) \in P[x]$ is a polynomial with any number greater than 1. Let

$$d(x) = (f(x), x - x^4)$$
 and $m(x) = [f(x), x - x^4]$, then

$$rankf(A) + rank(A - A^4) = rankd(A) + rankm(A)$$
.

With the help of theorem 1 we can get if A is a fourth-idempotent matrix, then

rankf(A) = rankd(A) + rankm(A)

This theorem shows that there are also many rank eigenvalues of fourth-idempotent matrices.

Theorem 2

$$A \in P^{n \times n}, t \ge 1 \in N^+, rank(A) + rank(A^t - A^{t+3}) = rank(A^t) + rank(A - A^4)$$

Proof: When t = 1, the equation clearly holds.

Let t > 1, $f(x) = x^{t}$, $g(x) = x - x^{4}$, By simple calculation we get (f(x), g(x)) = x $[f(x), g(x)] = x^{t} - x^{t+3}$. By the above we can get the following equation.

 $rank(A) + rank(A^{t} - A^{t+3}) = rank(A^{t}) + rank(A - A^{4})$

REFERENCES

- [1] Baksalary O M, Bernstein D S, Trenkler G. On the equality between rank and trace of an idempotent matrix[J]. Applied Mathematics & Computation, 2010, 217(8):4076-4080.
- [2] Wright S E. A note on the equality of rank and trace for an idempotent matrix[J]. Applied Mathematics & Computation, 2011, 217(16):7048-7049.
- [3] Tian Y, Styan G P H. Rank equalities for idempotent matrices with applications[M]. 2006.
- [4] Baksalary J K, Baksalary O M, Szulc T. Properties of Schur complements in partitioned idempotent matrices[J]. Linear Algebra & Its Applications, 2004, 379(1):303-318.

Citation: Lin Deng, et.al., (2019). On the Equality of Rank of a Fourth-Idempotent Matrix. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(5), pp.1-3. http://dx.doi.org/10.20431/2347-3142.0705001

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.