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1. INTRODUCTION 

Non-Newtonian fluids are referred to those materials that cannot be adequately described by the 

Navier-Stokes equations. There are materials such as drilling muds, soaps, apple sauce, sugar 

solution, foams, paste, certain oils, lubricants, clay coating, colloidal and suspension solution, and 

ketchup, which are now declared as non-Newtonian fluids. Many models in view of diverse properties 

of such fluids were suggested. For instance, Jamil et al. [14] studied the oscillating flows in a 

generalized second grade fluid. The unsteady Couette flow of the fractional Maxwell fluid was 

examined by Athar et al. [4]. Qi and Jin[28] extended such analysis for the generalized Oldroyd-B 

fluid. Rashidi et al. [30] constructed approximate solutions for the flow and heat transfer in a 

micropolar fluid. Effects of Soret and Dufour in the magnetohydrodynamic (MHD) flow of the 

Casson fluid were examined by Hayat et al. [8]. Motsa et al. [24] presented the MHD flow of the 

upper-convected Maxwell fluid over a porous stretching surface. They used the successive Taylor 

series linearization method for the solutions of the resulting problem. Effects of MHD and mass 

transfer of the chemically reactive Maxwell fluid past a porous surface were studied by Vajravelu et 

al. [35]. It is noticed from the mentioned studies that the rheological parameters in constitutive 

equations of non-Newtonian fluids make their resulting differential systems more nonlinear and 

higher order. Such differential systems offer interesting challenges to the researchers from different 

quarters. The Jeffrey fluid is also one of the models for the non-Newtonian fluids describing the 

effects of the ratio of relaxation to retardation times and retardation time. Kothandapani and Srinivas 

[17] used this model for the MHD peristaltic flow of the Jeffrey fluid in an asymmetric channel. 

Nadeem and Akbar [25] extended the analysis of Ref. [17] for the variable viscosity. Thermal 

radiation effects in the mixed convection flow of the Jeffrey fluid past a stretching sheet were 

examined by Hayat et al. [11]. Effects of heat generation/absorption in the Jeffrey fluid flow by a 

porous stretching sheet were also studied by Hayat et al. [10]. Heat transfer process with radiation 

effects is very interesting in electrical power generation, solar system technology, space vehicles, 

missiles, propulsion devices for aircraft, nuclear plants, astrophysical flows, and many other industrial 

and engineering applications. Although ample studies were generated for the boundary layer flow in 

the presence of thermal radiation, the fluid thermal conductivity in such cases is treated as a constant. 

This perhaps is not realistic because it is now proven that the thermal conductivity of liquid metals 

varies linearly with temperature from 0◦F to 400◦F [Kay [16]]. Thus, the effects of viscous dissipation 
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and thermal radiation in the flow of a viscous fluid over a permeable stretching sheet were analysed 

by Cortell[5]. Pal and Mondal [26] examined the influence of thermal radiation in the hydromagnetic 

Darcy-Forchheimer mixed convection flow over a stretching surface. Here, the fluid fills the semi-

infinite porous space. Combined effects of conduction-radiation in the natural convection flow were 

addressed by Ashraf et al. [3]. Anbuchezhian et al. [1] examined the thermophoresis and Brownian 

motion effects in the boundary layer flow of the nanofluid with thermal stratification. Mahmoud and 

Waheed[22] described the thermal radiation effects in the flow of a micropolar fluid past a permeable 

plate. Shit and Halder [34] examined the thermal radiation and Hall effects in the MHD flow over an 

inclined permeable surface. Hayat et al. [11] studied the mixed convection flow of a micropolar fluid 

with the thermal radiation and chemical reaction. Qasim et al. [27] discussed the thermal radiation in 

the mixed convection flow of the second-grade fluid over an inclined surface. In all the above-

mentioned attempts, the flow is considered to be two-dimensional. However, Wang [38] considered 

the three-dimensional boundary layer flow induced by a stretching surface. In continuation, Ariel [2] 

developed the homotopy perturbation solution for the flow problem in Ref. [38]. It should be noted 

that in Refs. [2,38], the flows of viscous fluids without thermal radiation were studied. 

The present article discusses the three-dimensional flow of the Jeffrey fluid over a linearly stretching 

surface when the thermal conductivity varies with temperature. A mathematical model is prepared in 

the presence of thermal radiation effects. We developed series solutions for the resulting problems by 

using the homotopy analysis method (HAM) [21]. Results for the velocity, temperature and 

concentration are constructed. Convergence criteria for the derived series solutions are established. 

The velocity and temperature are analyzed for various parameters of interest. The local Nusselt 

number is tabulated and examined. Peristaltic motion in a channel/tube is now known as an important 

type of flow occurring in several engineering and physiological processes. The peristalsis is well 

known to the physiologists to be one of the major mechanisms of fluid transport in a biological system 

and appears in urine transport from kidney to bladder through the ureter, movement of chyme in the 

gastrointestinal tract, the movement of spermatozoa in the ductus effeerentes of the male reproductive 

tract and the ovum in the female fallopian tube, the transport of lymph in the lymphatic vessels and 

vasomotion of small blood vessels such as arterioles, venules and capillaries. Such mechanism has 

several applications in engineering and in biomedical systems including roller and finger pumps.  

The need for peristaltic pumping may arise in circumstances where it is desirable to avoid using any 

internal moving part such as pistons in pumping process. After the experimental work of Latham [20] 

on peristaltic transport, Shapiro et al. [32] made a detailed investigation of peristaltic pumping of a 

Newtonian fluid in a flexible channel and a circular tube. Sud et al. [35] analyzed the pumping action 

of blood flow in the presence of a magnetic field. Even though it is observed in living systems for 

many centuries, the mathematical modeling of peristaltic transport began with trend setting works by 

Shapiro et al. [33] using wave frame of reference and Fung and Yin [39] using laboratory frame of 

reference.  

Hayat et al. [12] studied the peristaltic flow of a micropolar fluid in a channel with different wave 

frames. Hayat and Ali [7] investigated the peristaltic motion of a Jeffrey fluid under the effect of a 

magnetic field. Vajravelu et al. [37] studied the peristaltic transport of a Casson fluid in contact with a 

Newtonian fluid in a circular tube with permeable wall. In physiological peristalsis, the pumping fluid 

may be considered as a Newtonian or a non-Newtonian fluid. Kapur [15] made theoretical 

investigations of blood flows by considering blood as a Newtonian as well as non-Newtonian fluids.  

Radhakrishnamacharya and Srinivasulu [29] studied the influence of wall properties on peristaltic 

transport with heat transfer. Mekheimer and Abd Elmaboud [23] analyzed the influence of heat 

transfer and magnetic field on peristaltic transport of Newtonian fluid in a vertical annulus. Hayat et 

al. [13] studied the effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a 

porous space. Krishna Kumari et.al [18] studied the peristaltic pumping of a magnetohydrodynamic 

casson fluid in an inclined channel. Ravi Kumar et.al [31] considered power-law fluid in the study of 

peristaltic transport.  Krishna Kumari et al [19] has discussed peristaltic pumping conducting Jeffrey 

fluid in a vertical porous channel with heat transfer. Hayat et al [6] have analysed three-dimensional 

stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. 
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In this paper, peristaltic flow of a conducting Jeffrey fluid in a vertical porous channel with heat and 

mass transfer is studied. Using the perturbation technique, the nonlinear governing equations are 

solved. The expressions for velocity, temperature and concentration the pressure rise per one wave 

length are determined. The effects of different parameters on the temperature and the pumping 

characteristics are discussed through graphs.  

2. MATHEMATICAL FORMULATION 

We analyse the motion of an electrically conducting, incompressible Jeffrey fluid in a two-

dimensional vertical porous channel induced by sinusoidal waves propagating with constant speed ‘c’ 

along the channel walls. For simplicity, we restrict our discussion to the half width of the channel. We 

assume that a uniform magnetic field of strength Bo is applied normal to the walls as shown in the 

figure.1 assuming the magnetic Reynolds to be small we neglect the induced magnetic field.  

 

Fig1.Physical model 

The wall deformations are given by 

𝑌 = 𝐻(𝑥, 𝑡) = 𝑎 + 𝑏𝐶𝑜𝑠(
2𝜋

𝜆
(𝑥 − 𝑐𝑡))(𝑟𝑖𝑔𝑕𝑡𝑤𝑎𝑙𝑙)                                (1) 

𝑌 = 𝐻(𝑥, 𝑡) = −𝑎 − 𝑏𝐶𝑜𝑠(
2𝜋

𝜆
(𝑥 − 𝑐𝑡))(𝑙𝑒𝑓𝑡𝑤𝑎𝑙𝑙)                                (2) 

where 2a is the width of the channel, b is amplitude of the waves and  is the wave length. 

The constitutive equations for an incompressible Jeffrey fluid are 

𝑇 = −𝑝 𝐼 + 𝑠                                      (3) 

𝑠 =
𝜇

1+𝜆1
(𝛾  + 𝜆2𝛾  

 )                                    (4) 

where T and s are Cauchy stress tensor and extra stress tensor respectively, p is the pressure, I is the 

identity tensor, 1 is the ratio of relaxation to retardation times 2 is the retardation time,  is shear rate 

and dots over the quantities indicate differentiation with respect to time. 

In laboratory frame, the continuity equation is 

𝜕𝑈 

𝜕𝑋 
+

𝜕𝑈 

𝜕𝑌 
= 0                         (5) 
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The equation of energy is 
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The boundary conditions on, velocity, temperature and Concentration fields are 
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Where  U


,V  are the velocity components in the laboratory frame ( X ,Y ), uis density,  is the 

coefficient of viscosity of the fluid, cpis the specific heat at constant pressure,  is the coefficient of 

linear thermal expansion of the fluid, k0is the thermal conductivity, k is permeability and T is 

temperature of the fluid. 

The radiation heat term by using The Rosseland approximation is given by 
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Using equations (11 – 13) in equation (8) we get  
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We shall carryout this investigation in a coordinate system moving with the wave speed c, in which 

the boundary shape is stationary. The coordinates and velocities in the laboratory frame )( YX and 

the wave frame )( yx are related by 

),(,,,, txPpVvcUuYyctXx   

where uv , are the velocity components and Pp , , are the pressures in wave and fixed frames. 

Equations (5)-(9) can be reduced into wave frame as follows 
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Boundary conditions in wave frame are 

u + c = 0,  T = T1 and  C = C1 at y = H(x) 
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where R is the Reynolds number,  is the dimension less wave number, K is the permeability 

parameter, Gr is the Grashof number, Pr is the Prandtl number,  is the Kinematic viscosity of the 

fluid, Ec is the Eckert number, Rd is the thermal radiation parameter and N is buoyancy ratio, M is the 

magnetic. 

The basic equations (14)-(18) can be expressed in the non-dimensional form as follows 
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and 
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𝜕2𝑢
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The non-dimensional boundary conditions are 

u =  - 1,  = 1 and =1 at y = h                                 (29) 
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Using long wave length approximation and dropping terms of order  and higher, 

It follows equations (21) to (24) are 
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                                 (34) 

u =  - 1,  = 1 and =1 at y = h                                 (35) 
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


y
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The dimensional volume flow rate in the laboratory and wave frames are given by 

ydyxuqYdtYXUQ

xhtxh

),(,),,(

)(

0

)(

0

                     (37) 

and now these two are related by the equation 

)(1 xhcQ                         (38) 

The time averaged flow over a period T at a fixed positionx is 

𝑄 =
1

𝑇
 𝑄𝑑𝑡

𝑇

0
                       (39) 

3. SOLUTION OF THE PROBLEM 

Equations (31) and (34) are non-linear because they contain three unknowns u,  and  which must be 

solved simultaneously to yield the desired velocity profiles. Due to their nonlinearity they are difficult 

to solve. However the fact Ec is small in most practical problems allows us to employ a perturbation 

technique to solve these non-linear equations. We write 

u = u0 + Ec u1 
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 = 0  +Ec1 

 = 0  +Ec1                                               (40) 

Using the above relations, the equations (40), (31)-(34) become 
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hyEcuEcu  at11and1 010                                (44) 
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4. ZEROTH   ORDER   SOLUTION 

By comparing constant terms on both sides of the above equations we get the zeroth order equations 

as below 
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u = - 1,  = 1 and =1 at y = h                                 (49) 
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Solving the equations (29) and (30) with the boundary conditions (31), we obtain 
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Using the relation (25) we obtain zeroth order dimensionless mean flow in the laboratory and in the 

wave frame 
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The pressure gradient is given by 
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The non-dimensional zeroth order pressure rise is given by 

dx
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Time mean flow (time averaged flow rate)  

                                  (57) 
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First order solution 

From equations (41), (42) and (43) we obtain the first order equations  
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u1=  0, 1 = 0 and 1 = 0 at y = h                                 (61) 
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Solving the equations (38) and (39) with the use of boundary conditions (40) we obtain 
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The friction factor F is given by  
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The rate of heat transfer (Z) is defined by 
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Using the relation (25) we obtain first order dimensionless mean flow in the laboratory and in the 

wave frame 
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The pressure gradient is given by 
𝑑𝑝1
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=
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The non-dimensional first order pressure rise is given by dx
dx

dp
p 1

1

0

1   

The expression for the velocity is given by u = u0 + Ecu1 

where  u0 and u1are given by the equations (32) and (41). The expression for the temperature is 

obtained as  = 0 + Ec1where0 and 1are given by the equations (33) and (42). The expression for 

the concentration is obtained as 

 = 0 + Ec1where 0 and 1are given by the equations (33) and (42). The expression for the pressure 

rise is 10 pEcpp   where p0 and p1are given by the equations (36) and (45). 

In the absence of mass transfer (N = 0) and heat sources ( = 0) the results are good agreement with 

Krishna Kumari et al [19]. 

5. RESULTS AND DISCUSSION 

In this analysis we analyse the effect magnetic field, thermal radiation, dissipation and radiation 

absorption on peristaltic transport of convective heat and mass transfer flow of an electrically 

conducting fluid in a symmetric channel in the presence of heat sources. The velocity, temperature, 

concentration, pressure drop, Friction factor and rate of heat transfer have graphically exhibited for 

different parametric variations. 

Figs.2-7 exhibits the variation of velocity distribution (u(y)) with different parameters. It can be seen 

from the profiles that higher the thermal buoyancy force(G) smaller the magnitude of the velocity in 

the fluid region with maximum attained on the centre y=0. Fig.3 represents the effect of Jeffrey 

parameter(  ). From the profiles we notice an enhancement in u  with higher values of . The effect 

of heat sources on u is exhibited in fig.4.In the presence of heat generating heat sources, energy is 

liberated in the flow region, which give to an enhancement in the u . Fig.5 show the variation of u 

with radiation parameter (Rd). Higher the thermal radiation smaller the magnitude of u with 

maximum attained on y=0. Also, higher the thermo-diffusion (Sr) effects smaller the magnitude of u 

(fig.6). The effect of buoyancy ratio(N) on u is shown in fig.7.When the molecular buoyancy force 

dominates over the thermal buoyancy u increases when the forces are in the same directions.     

This shows that inclusion of viscous dissipation enhances the magnitude of the velocity in the entire 

flow region. The temperature distribution (  ) is exhibited in figs.8-9 for different values of heat 

source parameter () and Thermal radiation parameter (Rd). From fig.8 we find that in the presence of 

generating source, heat is generated in the boundary layer, which in turn    increase the fluid 

temperature. It is found that higher the radiative heat flux larger the temperature in the fluid region. It 

is due to the fact that an increase in Rd, increases the thickness of the thermal boundary layer 

decreases (fig.9).  

The concentration distribution () with parameters,,Rd and Sr is shown in figs.10-12. From fig.10,12 

we notice an increment in the concentration with increasing values of heat generating source, Soret 

parameter (Sr). This shows that higher the thermo-diffusion effects larger the thickness of the solutal 

boundary layer. Also, the concentration reduces with increase in thermal radiation parameter (Rd). 

The pressure drops ( P) is exhibited in figs.13-18 as a function of Q for different values of 

G,,,Rd,Sr and N. An increase in Grashof number (G) reduces the pressure rise. (figs.13). Higher 

the Jeffrey parameter () larger the pressure rise fixing other parameters(fig.14). The variation of p 

with heat source parameter () (fig.15) shows that for larger strength of the heat source parameter, we 

notice a depreciation in p. Higher radiation parameter/ the thermo-diffusivity effects larger the 
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pressure drop(figs.16&17). The variation of p with buoyancy parameter(N) shows that when the 

molecular buoyancy force dominates over the thermal buoyancy force, p enhances with N1.0 and 

reduces with still higher values of N 1.5(fig.18). 

The friction factor (F) as a function of Q


 is depicted in figs,19-21 for different values of G,,,Rd,Sr 

and N. We find from fig.30 that the friction factor reduces with G. Higher Jeffrey fluid parameter () 

/radiation parameter (Rd) smaller Friction factor (fig.20&22). Lesser the molecular diffusivity/higher 

thermo-diffusion effects we notice a depreciation in F(figs.23).Also F enhances with increase in 

(fig.21).With respect to buoyancy ratio(N) we find that when the molecular buoyancy force 

dominates over the thermal buoyancy force, F increases with N1.0 and reduces with higher N  

1.5(fig.24). 

Figs.25-26 depict the rate of heat transfer(Z) with variations in  and Rd. It can be see from the 

profiles that rate of heat transfer reduces with increase in heat generating/absorbing source. For higher 

values of radiation parameter (Rd) we find a depreciation in Z(fig.26). 
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6. CONCLUSIONS 

The combined influence of thermal radiation and heat sources on convective heat and mass transfer 

flow of Jeffrey fluid in vertical channel has been discussed for different parametric variations. The 

important conclusions of this analysis are 

 The magnitude of u decreases with G, M, Sc and enhances with K and 1. |u| enhances with heat 

sources parameter  and buoyancy ratio N. Higher the thermal radiation and dissipation smaller 

|u|. 

 Higher the strength heat source / thermal radiation / dissipation lager the temperature () in the 

flow region. 

 The concentration () enhances with soret parameter (Sr) and heat source parameter (), reduces 

with Rd and Ec. 

 The presser rise p reduces with G, M,K, , Sc and enhances with Jeffery parameter  and Ec. p 

enhances with increases with increasing buoyancy ratio N 1.0 and reduces with higher N  1.5. 

 The friction factor (F) reduces with G, K, , Rd, Sc, Sr and enhances with magnetic parameter M. 

The friction factor enhances with increasing buoyancy ratio N 1.0 and reduces with higher N  

1.5. 

 The rate of heat transfer reduces with increasing  and Rd and enhances with dissipation 

parameter Ec. 
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