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1. FORMULATION OF THE PROBLEM 

Production control theory is an intensively developing field of knowledge, the development of which 

is stimulated by practical needs [1,2]. Along with the traditional methods of designing control systems 

along precise lines [3–8] methods related to partial differential equations (PDE models) [9–12]. The 

main approaches to the design of production line control systems are based on program control and 

deviation control [13–15]. If, when moving along a technological route, the law of changing the 

parameters of objects of labor is known and known are external influences on the parameters of objects 

of labor, and the goal of managing the production process is achievable, then the law can be obtained 

control parameters of the production line for the period of the production program. If the perturbations 

are unknown, but can become measured at the time of the decision, then the control of the process 

parameters is formed as a function of their perturbations. 

When designing production line control systems, an important step is to find an appropriate description 

model for the controlled process. The classical theory of optimal control [16,17] widely used for 

dynamic systems design [13,15,19,20], whose evolution is given by differential equations. The 

developed apparatus of the theory of optimal control can be successfully applied when building models 

of a controlled production process in the case when continuous models are used to describe them. [1]. 

The model of the controlled process should contain the parameters of the flow of products and the 

parameters of the state of the inter-operational backlogs in both stationary and transient modes, as they 

are key for production control [1]. In addition, the model should be able to provide a solution to the 

production task for a limited time using the specified computing resources.  

2. ANALYSIS OF RECENT DEVELOPMENTS AND PUBLICATIONS 

In numerous publications devoted to the development and design of production line control  systems, 

there are three main types of production systems models: mass service models (TQ-model), discrete 

event models (DES-model) [21,22] and continuous fluid models (Fluid -model) [2,23]. Well-proven 

models for describing quasistatic processes are not used to design transient control systems [1]. In the 

last decade, the design of control systems for production lines used models containing partial 

differential equations (PDE-model) [9,12].  

In the last decade, the design of control systems for production lines used models containing partial 

differential equations [24], combining the advantages of TQ-models, DES-models and Fluid-models, 

significantly expanded the capabilities of designing production line control systems. PDE-models being 

continuous can be successfully used in the description of stationary and transient modes of production 

of a production line and do not require a large expenditure of machine time [1]. 

Abstract: The problem of optimal control of the parameters of the production flow line -  stocks  (work in 

process) and the rate of processing of objects of labour for a technological operation is considered. The article 

presents a mathematical formulation of the problem of controlling the parameters of a production line with 

restrictions on work in progress and the speed of machining parts for each technological operation. The control 

program is determined by the specified quality criteria. An example of the calculation of the optimal control 

for the production line parameters is presented. 
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3. FORMULATION OF RESEARCH OBJECTIVES 

In modern economic conditions, the duration of the production cycle is a significant part of the product 

life cycle, as a result, the production lines for a significant part of the time operate in a transient unsteady 

mode.  

Particular attention in the tasks of optimal control  of modern production of products is occupied by 

transitional modes of operation of a production line with a length of up to a month, associated with the 

launch and increase of production volumes at the beginning of the product life cycle, and with the 

folding and stopping of production at the stage of completion of the life cycle [25,c.4589].  

The next important issue is the study of optimal transition modes from one normative state of production 

line parameters to another, due to an increase or decrease in demand for manufactured products [1]. The 

present work is devoted to these areas of research. 

4. MAIN MATERIAL 

It is known [6,26–28] that in order to ensure continuous operation of the production, the value of the 

capacity of the production line must be related to the value of the interoperative reserve by a strictly 

defined dependence, equation of the continuity of the flow of objects of labor along the technological 

route [12]. In general, the control of interoperability backlog along the technological route is achieved 

through the use of a multithreaded line control  model with reserve stock allocation [29] or by providing 

the required gradient of the rate of processing of objects of labor along the technological route (picture 

1). The capacity control of a production line is controlled by gradually increasing the number of 

equipment units operating in parallel, directly through measures to change the processing modes of 

objects of labor with technological equipment [1]. We believe that the given: a) the sequence of 

technological operations and their technological parameters; b) the equipment necessary to perform the 

technological operation, the parameters of its work and the layout scheme; c) the properties of the object 

of labor and the laws of the transfer of technological resources to the objects of labor as a result of the 

impact of equipment. We introduce one-dimensional coordinate space ( )S,t  [25,30,31]. Divide the 

coordinate axis S0  into segments 
 mmm SSS ,1−

. Coordinate 1−mS  ($) and  

mS ($) characterizes the beginning and ending thm −  technological operation,  Mm ..1= .At the same 

time, we assume that 00 =S ($), MS = dS ($), where dS ($) – production cost. We also believe that the 

price of the costs associated with the control  for each technological operation is known, is different for 

each technological operation and depends on the time of day. The flow parameters of the production 

line model in the two-step description are interoperative backlogs characterized by density  
  ( )S,t0

, and the rate of movement of objects of labor 
  ( )dS,t1  on the technological route [32]. We believe 

that the discrete control function with a sufficient degree of accuracy can be approximated by a 

continuous function  

 

Fig1. Control model for distributed flow line parameters 
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Fig2. Typical section of the production line structure [22,с.177] 

( )S,tY  (figure 1). The latter is due to the fact that modern production lines in the composition of the 

aggregated technological module contain a sufficiently large amount of equipment of different 

productivity that can work sequentially, in parallel or in combination (figture 2) [6,7,27,28,33]. The 

models of optimal control of switching on the backup equipment (identical, equipment of different 

productivity) to ensure the required capacity of the production line are discussed in detail in the work 

[34]. We introduce the function ( )S,tY , characterizing the cost of technological resources for the 

implementation of control  ( )S,tY . technological resources needed to manage ( )S,tY  within thm −  a 

technological operation for the duration of the production cycle dT  determined by the integral 

( ) ( ) 
−



d m

m

T S

S

Y dtdSS,tS,tY

0 1

  ($),                                                                       (1) 

and the total cost of managing the state of inter-operational reserves and the performance of 

technological areas for all operations of the technological route by the integral of the form 

( ) ( )  

d dT S

Y dtdSS,tS,tY

0 0

  ($),                                                                       (2) 

The parameters of the production line for continuous production with a sufficiently large number of 

technological operations satisfy the system of balance equations [12]. For a one-step approximation, 

the system of balance equations takes the form: 

  ( )
t

S,t



 0 +
  ( )

S

S,t



 1 =0,   ( )S,t1 =   ( )S,t 1 .                                            (3) 

The normative rate   ( )S,t 1  of processing items of labor for the production line is set at each point 

of the technological route and for each point in time. As indicated above, the flow parameters in the 

model for managing the parameters of the production line are interoperative backlogs, which 

characterize the density   ( )S,t0  of distribution of technological objects of labor along the 

technological route   ( )S,t1  along the route [35– 37]. The closedness of the balance system of 

equations for the parameters of the flow description level (macro level) in the continuity equation is 

provided using the equations of the subject-technological description level (micro level) [38]. 

Behavior of stream parameters   ( )S,t0 ,   ( )S,t1  production line constrained by the initial and final 

conditions of the distribution of objects of labor on the technological route  

  ( )S,00 =   ( )S00 ,    ( )S,Td0 =   ( )S
dT0                                 (4) 

the boundary conditions determining the receipt from the warehouse of raw materials, materials for the 

first technological operation and the output of the finished product from the last technological operation: 
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  ( )00 ,t =   ( )tS0 ,    ( )01 ,t =   ( )tS1                                 (5) 

storage capacity restrictions 

  ( )   ( ) 000  S,tSG .                                                              (6) 

Strict inequality corresponds to the continuous mode of operation of the production line 

 
Fig3.  Block diagram of the software control parameters of the production line 

5. MATHEMATICAL FORMULATION OF THE PROGRAM CONTROL PROBLEM 

Mathematical formulation of the program control problem. In general, the task of building an optimal 

program [12,14,39] for managing interoperability   ( )S,t0  production line using to achieve the 

objectives of the control  of additional equipment can be formulated as follows: to determine the status 

of interoperability backlog   ( ) 00 GS,t   production line for each point  dS,S 0  technological 

route for a period of time  dT,t 0  while managing the performance of process equipment 

( ) YGS,tY   on  m  technological operations delivering a minimum of functionality [14, p.17] 

∫ ∫ (𝑌1(𝑡, 𝑆) ⋅ 𝜔𝑌1(𝑡, 𝑆) + 𝑌0(𝑡, 𝑆) ⋅ 𝜔𝑌0(𝑡, 𝑆))𝑑𝑆
𝑆𝑑
0

𝑑𝑡
𝑇𝑑
0

→ 𝑚𝑖𝑛 ($),                              (7) 

with differential connections 

  ( )
t

S,t



 0 +
  ( )

S

S



 1 =
( )

( )S,tY
S

S,tY
0

1 −



− ,   ( )S,t1 =   ( )S,t 1 ,                               (8) 

which are determined by the system of balance equations of the two-level model of the 

controlledproduction process, the restrictions along the trajectory on the phase variables 
  ( )S,t0

 [14, 

p.21], determined by drive capacity [40]: 

  ( )S,t00  , [𝜒]0(𝑡, 𝑆) ≤ [𝜒]0𝐺(𝑆),                                                           (9) 

constraints along the control path [14, p.20]  

( )S,tY0 , ( )   ( )   GS,tS,tY 11 + ,  ( )S,tY =∫ 𝑌0(𝑡, 𝜁)
𝑆

0
𝑑𝜁 + 𝑌1(𝑡, 𝑆),    (10) 

initial conditions  

  ( )S,00 =   ( )S00 ,                                                                      (11) 

final state (control goal)  

  ( )S,Td0 =   ( )S
dT0                                                                        (12) 
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and boundary conditions 

  ( )01 ,t =   ( )01 ,    ( )dS,t1 =   ( )dS 1 ,                                                       (13) 

Under control  ( )S,tY = ( ) ( )S,tY,tY

S

1

0

0 d +  refers to the magnitude of the processing rate of items of 

labor on the additionally included equipment at the location of the technological route with the 

coordinate  dS,S 0  at the moment of time t.  

Limit value   G1  S  в момент времени t. determines the maximum permissible rate of processing 

of items of labor in the area of the technological route with the coordinate 

( )S,tY0 = ( )S,tY000  , ( )S,tY1 = ( )S,tY101  , const=00 , const=01 .                           (14) 

In general j0  it can be specified as a function of time t. Dependence (14) corresponds to the production 

systems of the flow type of production with mass and serial production, determined by linear production 

functions [41], connecting the costs of technological resources ( )S,tY  with production rate ( )S,tY . 

Function ( )S,tY  with restrictions on phase variables (9)  

and control constraints (10) ensuring the achievement of the control goal (12) with the minimum value 

of the integral (7) and differential constraints (8), is the optimal program or optimal contr [15,p.16] for 

stream parameters   ( ) 00 GS,t  . production line. In designing the control system, differential 

equation equations (8) are used, which are determined by the balance equation system of a two-level 

model of a controlled production process. 

6. CALCULATION OF THE OPTIMAL PROGRAM FOR MANAGING THE STATE OF THE INTER-

OPERATIONAL BACKLOGS OF THE PRODUCTION LINE 

To determine the optimal program of control of interoperative reserves of the production line ( )S,tY ,

  ( )S,t0 ,   ( )S1  in a row Fourier on the gap  dS,S 0 : 

( ) )t(S,tY 000 = , ( )        


=



=

+=

11

1

j

jj

j

jj SkcosYSksinYS,tY , ...j,
S

j
k

d
j =


= 1

2
              (15) 

  ( )dSS,tY
S

Y

dS

d
=

0

0

1
,   ( )  dSSksinS,tY

S
Y j

S

d
j

d

=

0

2
,   ( )  dSSkcosS,tY

S
Y j

S

d
j

d

=

0

2
, 

  ( )          


=



=

++=

1

0

1

0000

j

jj
j

jj SkcosSksinS,t ,                                         (16) 

  ( )          


=



=

++=

1

1

1

1011

j

jj
j

jj SkcosSksinS,t ,                                         (17) 

with decomposition coefficients       jj Y,Y,Y 0 ,      jj ,, 0000  ,       jj ,, 1101  .  

Decomposition coefficients       jj ,, 1101   will be considered known and independent of time, 

      jj Y,Y,Y 0 ,       jj ,, 0000   to be determined [42,p.356]. The sequences (15) - (17) are 

orthonormal systems of functions [43], whose coefficients can be found using the Euler – Fourier 

formulas [42,p.357]. The choice of the corresponding orthonormal system of functions is determined 

by the formulation of the problem and must provide the best approximation to the exact solution [42,43]. 



Optimal Control of the Parameters of the Production Line   

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 6 

Taking into account (15) - (17), the quality criterion (4.7) can be integrated up to a constant in the form 

[44, p.46] 

    mindtYYY

dT

j

j

j

j →












 
+


+ 



=



=0 1

201

1

2012
0000

22
                                                      (18) 

The constraints along the trajectory on the phase variables and the control, as well as the initial, 

boundary conditions and the control target, taking into account (15) - (17), can be written as follows:-

condition of non-negativity 

  000 = ,    00 = j ,    00 = j  at   ( )S,t00                 (19) 

- limited storage capacity for interoperable stocks  

   
0000 G= ,    

jGj 00 =      jGj 00 = , at   ( )   ( )SS,t G00                             (20) 

- control constraint 

  00 =Y ;   0=jY ;   0=jY ;  at  ( )S,tY0                            (21) 

   
2

0 000101
d

G

S
−−= ,      

j
jjGj

k
Y

2
0011 +−= ,       jjGjY 11 −= ,                          (22) 

at ( )     ( )S,tS,tY G 11 −   

- under initial conditions  

   
000000 =

=t
,     

j
t

j 00
0

0 =
=

,     j
t

j 00
0

0 =
=

,               (23) 

and control objectives  

   
0000 d

d
TTt

=
=

,     
jT

Tt
j d

d
00 =

=
,    

jT
Tt

j d
d

00 =
=

.               (24) 

and specified regulatory parameters of the technological equipment along the technological route 

      jj ,, 1101  . Taking into account the form of the target functional (18) with differential 

constraints  

 
00

00
−=



dt

d
, 

 
   

 
   












−=+


=−


;Ykk
dt

d

;Ykk
dt

d

jjjj
j

jjjj
j

1

0

1

0

 

...j

,
S

j
k

d
j

=


=

1

2
                                         (25) 

which are determined by the system of balance equations (8), we write the Pontryagin function for the 

system under study  

   ( )    ( )    


=







 
−


−+−++−−=

1

01201
11

2
0000000

22
j

jjjjjcjjjjsj YYYkYkH                        (26) 

Taking into account the restrictions (19) - (22) on the phase coordinates, the Lagrangian of the system 

under study takes the form  

𝐿 = −𝜓0𝛶00 −𝜔00𝛶00
2 + ∑ (𝜓𝑠𝑗𝑘𝑗([𝑌]𝑗 + [𝜒1]𝑗) − 𝜓𝑐𝑗𝑘𝑗({𝑌}𝑗 + {𝜒1}𝑗) −

𝜔01

2
{𝑌}𝑗

2
−

𝜔01

2
[𝑌]𝑗)

∞
𝑗=1 + 

   ( )  
000

1

00   +++


=j
jcjjsj +    ( )    ( )( )    ( )

00000

1

0000   −+−+−


=

G

j
jjGcjjjGsj                (27) 

where 
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      ;,,, cjjcjsjjsj 0            ;0     0       0;     0 000000 ==                             (28) 

   ( )  0;  0 000000 =− ,G    ( )   ;0   0 00 =− sjjjGsj ,    ( )  0  0 00 =− cjjjGcj ,               (29) 

The conjugate system for Lagrangian has the form  

( )00
0 −−=



dt

d ; ( )sjsj
sj

dt

d
−−=


; ( )cjcj

cj

dt

d
−−=


.                                                      (30) 

The control at which the maximum of the control function is reached is determined from the system of 

equations  

02 00000
00

=−−=
d

dL , 
 

  001 =−−= jjcj
j

Yk
Yd

dL , 
 

  001 =−= jjsj
j

Yk
Yd

dL ,                            (31) 

whence the expansion coefficients are determined from the equation  

00

0
00

2


−= ,    

01


−=

jcj
j

k
Y ,    

01


=

jsj
j

k
Y ,                 (32) 

if the control value is within the control change interval and looks like (21) or (22), if it is outside of it. 

We substitute (32) into (25), we obtain the system of equations for determining the phase trajectory and 

control  

 

00

000

2


=



dt

d
, 

 
 

 
 












−



=



+



=



jj
jcjj

jj
jsjj

k
k

dt

d

;k
k

dt

d

1
01

2
0

1
01

2
0

 

...j

,
S

j
k

d
j

=


=

1

2
                                         (33) 

( ) 00000 +−−= t ; ( ) 0sjsjsjsj t +−−= ; ( ) 0cjcjcjcj t +−−= .                          (34) 

From the terms of additional slackness (28), (29) at   ( )S,t00  ,   ( )   ( )SS,t G00   solution (33) 

has the form: 

    ;t 000
00

0
00

2
+




=       

     











+−



=

++



=

.tkt
k

;tkt
k

jjj
jcj

j

jjj
jsj

j

001
01

2
0

0

001
01

2
0

0                             (35) 

Conjugate functions can change the sign once on the path corresponding to the constraint. Therefore, 

the switch point for (32) is outside the control interval. Define the integration constant  
000 , 

00 j  

and   00 j  from the initial condition (23) and control objectives (24) 

          ;)( 00000000 0 ==      
     

     






==

==

.)(

;)(

jjj

jjj

00000

00000

0

0
                (36) 

      ;T)T(
dTdd 00000

00

0
00

2
=+




= {

{𝜒0}𝑗(𝑇𝑑) =
𝜓𝑠𝑗0𝑘𝑗

2

𝜔01
𝑇𝑑 + 𝑘𝑗[𝜒1]𝑗𝑇𝑑 + {𝜒0}𝑗0 = {𝜒0𝑇𝑑}𝑗

;

[𝜒0]𝑗(𝑇𝑑) =
𝜓𝑐𝑗0𝑘𝑗

2

𝜔01
𝑇𝑑 − 𝑘𝑗{𝜒1}𝑗𝑇𝑑 + [𝜒0]𝑗0 = [𝜒0𝑇𝑑]𝑗

.
               (37) 

Allow system (36), (37) with respect to adjoint functions:  

   
,

Td

Td 00000

000 2
−

=  

   
 

   
 




























+

−


=














−

−


=

,k
Tk

,k
Tk

jj
d

jjT

j

cj

jj
d

jjT

j

sj

d

d

1

000

2

01
0

1

000

2

01
0

                                         (38) 
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taking into account (32), we obtain the expressions for the expansion coefficients (15) of the program 

control function of the flow parameters of the production line 

   

d

T

T

d 00000

00

−
−= ,    

   
  j

dj

jjT

j
Tk

Y
d

1

000
−



−

−= ,    
   

  j
dj

jjT

j
Tk

Y
d

1

000

−


−

= .                                        (39) 

We construct a software control for the production line with a given processing rate and initial 

distribution of objects of labor along the technological route.  

Using the expressions for the decomposition coefficients (39) and neglecting the edge effects when 

stopping the production line, assuming that the data existence time is much less than the stopping time, 

we obtain the decomposition coefficients for controlling the process of stopping the production line. 

The calculation of the optimal program for controlling the parameters of the production line for the 

modified PDE-model M / M / 1 queue [45]. The initial distribution of inter-operational reserves along 

the technological route is set = 2dS   

  ( )     






 
+=

d
InpInp

S

S
sinS,

2
0

10000
,  

00Inp =10000(pcs/$),  
10Inp =2000(pcs/$.) 

for a production line with technological equipment, the performance of which, depending on the 

position, is determined by the expression  

  ( )     






 
+=

dS

S
cosS,t

2
11011

,  01 =100 (pcs/hour),   11 = - 50 (pcs/hour). 

It is necessary for time dT =100 (hour) to reduce the number of interoperable reserves by moving from 

the initial distribution of interoperative backlogs to a given final distribution.  

  ( )     






 
+=

d
OutOutd

S

S
sinS,T

2
10000 ,  

00Out =9000(pcs/ $.),  

 
10Out = –1000(pcs/$). 

The  value = 2dS  is used to simplify calculations..  

For a description of the behavior of production line parameters for a controlled production process, we 

use a modified PDE model М/М/1 queues [45]: 

  ( )
t

S,t



 0 +
S

)S,t(F




=0,    ( ) ( )S,tS,t)S,t(F = 0 , ( )

  ( )
)S,t(S

M
S,t

S,t out


+


=

0

,                           (40) 

where - the number of objects of labor that are in technological processing (the number of units of 

technological equipment, assuming that processing of one product is allowed on one unit of equipment), 

)S,t(S  - the length of the area within the execution of the technological operation, out - the rate 

of movement of the object of labor at the exit from the production line.  

Whereas for the production line under consideration   ( ) MSS,t  0 , equation (40) takes the form 

  ( )
00 




+





St

S,t out ,   𝜈(𝑡, 𝑆) ≈
𝜇𝑜𝑢𝑡

[𝜒]0(𝑡,𝑆)
.                                                                   (41) 

For a given transient mode, we formulate the program control problem. Define the state of 

interoperability   ( ) 00 GS,t   production line for each point  dS,S 0  technological route for a 

period of time  dT,t 0  while managing the performance of process equipment ( ) YGS,tY  on  m  

technological operation that delivers a minimum of functionality [15] 
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( ) ( )( ) mindtdStYS,tY
S

d dT S

d
d

→+ 
0 0

2
01

1
,                                                       (42) 

with differential connections 

  ( )
t

S,t



 0 = ( )
( )tY

S

S,tY
0

1 −



− , 

constraints along the trajectory of the phase variables   ( )S,t0  [15, с.21], determined by drive 

capacity 

  ( )S,t00  ,   ( )   ( )SS,t G00  , 

constraints along the control path [14, p.20] : 

( )S,tY0 , ( )   ( )   GS,tS,tY 11 + ,  ( )S,tY = ( ) ( )S,tYStY 10 + , 

initial conditions   ( )S,00 , control objectives   ( )S,Td0  and boundary conditions 

  ( )01 ,t =   ( ) inp=  01 ;    ( )dS,t1 =   ( ) outdS = 1 , 

input - the rate of receipt of objects of labor on the production line. 

To determine the program of control of interoperative reserves of the production production line of the 

function   ( )S,t0 , ( )S,tY1  present in the form: 

( )     






 
+







 
=

dd S

S
cosY

S

S
sinYS,tY

22
111  ,     ( )       







 
+







 
+=

dd S

S
cos

S

S
sinS,t

22
1010000

. 

Taking this into account, the transition quality criterion (42) takes the following form  

   
min

22
0

2
1

2
12

0
2

→













++

dT

d dt
YY

Yα  

with equations of differential relations defined by the balance equation of the model of a controlled 

production process (41)  

 
0

00
−=



dt

d
;        

 
 1

10 2
Y

Sdt

d

d


=


; 

 
 1

10 2
Y

Sdt

d

d


−=


.  

We write the function Pontryagin, which allows to determine the program for controlling the parameters 

of the production line of the production and technical system  

𝐻 = −𝛼𝑑
2 ⋅ 𝑌0

2 −
{𝑌}1

2

2
−

[𝑌]1
2

2
− 𝜓0 ⋅ 𝛶0 + 𝜓𝑠 ⋅

2𝜋

𝑆𝑑
⋅ [𝑌]1 − 𝜓𝑐 ⋅

2𝜋

𝑆𝑑
⋅ {𝑌}1. 

The conjugate system can be obtained as: 

𝑑𝜓0

𝑑𝑡
= 0;  

𝑑𝜓𝑠

𝑑𝑡
= 0;  

𝑑𝜓𝑐

𝑑𝑡
= 0, 

which makes it possible to determine the expansion coefficients for optimal control from the system of 

equations  

𝑑𝐻

𝑑𝛶0
= −𝜓0 − 2𝛼𝑑

2𝛶0 = 0, 
𝑑𝐻

𝑑{𝑌}1
= −𝜓𝑐

2𝜋

𝑆𝑑
− {𝑌}1 = 0, 

𝑑𝐻

𝑑[𝑌]1
= 𝜓𝑠

2𝜋

𝑆𝑑
− [𝑌]1 = 0, 

from where  

2

0
0

2 d


−= ,   

d
c

S
Y


−=

2
1 ,   

d
s

S
Y


=

2
1 , 
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if its value is within the control change interval and is determined from the inequalities that determine 

the control constraints, if it is outside its limits. Substitute the obtained expressions into the equations 

of differential constraints, we obtain a system of equations for determining the phase trajectory: 

 
2

000

2 d
dt

d




=

 ;   
s

dSdt

d










 
=


2

10 2 ;  
c

dSdt

d










 
=


2

10 2 , 

whose solution  

   
002

0
00

2
Inp

d

t +



= ;     

10

2

10
2

Inps
d

t
S

+











 
= ;     

10

2

0
2

Inpc
d

j t
S

+








 
= . 

satisfies the initial conditions and control objectives. Allow system  

   
002

0
00

2
Inpd

d

Out T +



= ;     

10

2

10
2

Inpds
d

Out T
S

+











 
= ;     

10

2

10
2

Inpdc
d

Out T
S

+











 
= . 

with respect to conjugate functions 0 , s , c  

   

d

InpOut
d

T

00002
0 2

−
= ;     

    2
1010

2











−
= d

d

InpOut
s

S

T
;    

    2
1010

2 










−
= d

d

InpOut

c

S

T
. 

we obtain the expansion coefficients for the control function: 

   

d

InpOut

T

0000

0

−
−= ,    

   











−
−=

2

1010

1
d

d

InpOut S

T
Y ,     

   











−
=

2

1010

1
d

d

InpOut S

T
Y . 

calculated values of which after substitution of values  

100 =  (pcs./(hour*$)),    201 =Y  (pcs/hour),      101 −=Y  (pcs/hour).  

7. CONCLUSION  

It is shown that along with the traditional models of control of parameters of production flow lines, the 

control models associated with the use of partial differential equations (PDE models) play a significant 

role. The main types of models for controlling the parameters of production flow lines are defined. A 

PDE model for controlling the parameters of the production flow line is proposed, taking into account 

restrictions on the storage capacity and control value along the technological route.  

A PDE model has been developed to control the parameters of the production flow line for the regimes 

of reducing and increasing the volume of interoperable reserves. It is shown that the optimal control for 

the transitional mode of operation is determined by the first members of the expansion in orthonormal 

systems of functions whose coefficients are found using the Euler – Fourier formulas. The choice of an 

orthonormal system of functions is determined by the characteristics of the flow of the production 

process. Edge effects associated with filling technological positions with free processing line are 

estimated. The main features associated with the construction of a PDE-model for controlling the 

parameters of an industrial production line are considered. A target function is recorded that determines 

the quality criterion for controlling the parameters of a production production line. It is shown that the 

balance equations in partial derivatives, which act as differential constraints for phase variables, are 

replaced by a system of equations for the coefficients of decomposition of the parameters of the 

production flow line, which allowed us to obtain the control function in the form of time dependence 

and position (coordinates) in the technological route. In determining the optimal program for controlling 

the parameters of the production flow line for synchronizing the performance of the equipment of the 

flow line, the dependence of the control function on the initial conditions is shown. The Lagrange 

function was obtained for programmatically controlling the parameters of the production line. The 

possible types of controls for different values of the adjoint functions are highlighted. It is shown that 

the behavior of the flow parameters of the production line for these departments is determined by the 

initial and boundary conditions of the distribution of objects of labor along the technological route of 

the production line. 
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