

The Reimann Hypothesis Clay Institute Millenium Problem Solution

PAUL T E CUSACK*

Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

***Corresponding Author:** *PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada*

Abstract: This paper explains how the Riemann Hypothesis is a critical line which results from the Golden Mean Parabola skewed at 60 degrees. The equation gives the roots to the serial of Prime Numbers. The 6-0 degree failure Plane comes from Soil Physics.

1. INTRODUCTION

The Riemann zeta function $\zeta(s)$ is a function whose argument *s* may be any complex number other than 1, and whose values are also complex. It has zeros at the negative even integers; that is, $\zeta(s) = 0$ when *s* is one of $-2, -4, -6, \dots$ These are called its **trivial zeros**. However, the negative even integers are not the only values for which the zeta function is zero. The other ones are called *non-trivial zeros*. The Riemann hypothesis is concerned with the locations of these non-trivial zeros, and states that:

The real part of every non-trivial zero of the Riemann zeta function is 1/2.

Thus, if the hypothesis is correct, all the non-trivial zeros lie on the **critical line** consisting of the complex numbers 1/2 + it, where t is areal number and i is the imaginary unit.

WIKIPEDIA

ILLUSTRATION 1 MOHR'S CIRCLE

2. SOIL MECHANICS

From Soil Mechanics we know from Mohr-Coulomb Failure:

Tau=c+sigma*tan (45+Phi/2)

26.667=0+ (sqrt 3* tan (45+30/2)

=26.667/sqrt 3h=0.1539

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

(F=26.667 is the shear failure pressure. Refer to Astrotheology Cusack's Model of the Universe)

Tau=F=sin theta=88.5=k=Permeability of the Universe

So,

Au/2=sin 60 degrees $Z^2+(sqrt 3)^2]/2=sin 60$ Z=0.5774=1/sqrt 3=tan 30 degrees Y=tau=1/tan 30 degrees = cot 30 degrees =sqrt 3=tan 60 y/z=rise / run = m in the Y-z PLANE Tan 60=Y/z=3.4641/10=e^z Y=e^z

This is the critical line of the Riemann Hypothesis.

ILLUSTRATION 2 GOLDEN MEAN SKEWED PARABOLA

3. EQUATION OF A PLANE

ax+by+cz=0

EQUATION OF GOLDEN MEAN PARABOLA

X^2-x-1=0

Setting these equal to the skewed plane and the Energy-Time Parabola:

 $Ax+by=sin 60 * z = x^2-x-1$

There are 5 unknowns; therefore 5 coincident points are necessary. They are:

GOLDEN MEAN ROOTS

X=1.618, Y=0, Z=0 (POINT 1)

X=-0,.618, Y=0,Z=0 (POINT 2)

MINIMUM POINT OF PARABOLA:

X=0.5, Y=-1.2533, Z=0 (POINT 3)

X-Y PLANE

X=1,Y=O,Z=0 (POINT 4)

4. CRITICAL LINE

Y=mz+b

2,0,1

```
0=m(1)+b
B=-m
Rise over run=m=2/-1=-2
Y=2-2z
X=2, Y=0, Z=1 (POINT 5)
5. SOLVE SYSTEM OF 5 EQUATIONS; 5 UNKNOWNS
A = -1
B=-0.4892~-0.5
Z=sqrt 2
Y=-0.8154
X=0.9087
Y=2-2z
A(1)+b(0)+sin 60 degrees(0)=1^2-1-1
A=-1
A(1/2)+b(-1.2533)+sin 60 (0)=(1/2)^2-1/2-1
B=0.4892~-1/2
Ax+by+sin 60 z=1.618^2-1.618-1
0.8666z -0.4892y=1.618
And
Y=2-2z
Y=2-2(sqrt 2)
Y=-0.8154
0.866 z (0.4892(2-2z)=1.618
Z=sqrt 2
Ax+by+sin 60(z) = x^2-x-1
-x+by+sin 60 z=x^2-x-1
(-1/2)(0.8154)+0.866(sqrt 2)=x^2
X=0.0987
6. CRITICAL LINE
m=-2/1 = -2
Y=mx+b
Y=2-2z
Y=2-2(1/2)
y=1
Y'=-2
y-y'-2z
y=y'-2(1/2)
yy'=-1
x=0, y=1, z=1/2
```

E=E'-E
E'=2E
E=E'/2
Y=1/2y'
Y=y'
Y=e^z
Y=y'(2e^z)
Y=y'+C1
Y=e^z
Y=e^z
E^1=e^(-1)+C1
C1=0.23504
Number System based on 10:
Ln C1)=3.157~Pi
Y=e^z+Ln (Pi)
Y=e^z+ Pi
7. THIS IS THE CRITICAL LINE OF PRIME NUMBERS
PRIME NUMBERS CALCULATED FROM EQUATION
Y=e^z+Pi
Y'=e^z
Y=y'=m=-2
X^2-x-1=0
(-2)-2(-2)-1=5 PRIME
Z^2-z-1=-3
Z=1, -3 (Prime)
Z^2-z-1=-7
Z=-2, 3
Z^2-z-1=-11
Z=, -4,3
etc.
THIS, THEN IS THE CRITICAL LINE OF THE SC

THIS, THEN IS THE CRITICAL LINE OF THE SOLUTION TO THE PRIME NUMBERS ACCORDING TO THE REINMANN HYPOTHESIS.

8. IMAGINARY NUMBER=CONJUGATE OF THE GOLDEN MEAN

Now, 1/2+it ¹/₂ +(sqrt -1) z GOLDEN MEAN EQUATION: X=1/[X-1]

1+i=1/[1+i]

X=1/[x-1](1+i)=1/[1+i)-1 (1+i)=1/i (1+i)*i=1 I^2-i-1=0 Roots (Golden Mean and the Conjugate of the Golden Mean) 1.618,-- 0.618 I=sqrt (-1)=-0.618 THE UIMAGINARY NUMBER IS EQUAL TO -0.618 $\frac{1}{2}$ +(-0.618)(sqrt 2)

=0.374=1/sin 60 degrees

(1/m)+i*1/sin 60 degrees)=1/2+it

9. THE UNIVERSE

The Universe exists where the only real numbers=s are Prime Numbers. Since,

Y=y' for our universe,

And

y=y'=e^x

CRITICAL LINE

 $(e^z+Pi)/e^z$

1+ e^z/Pi

All Physical Quantities should be divided as such.

1+ e^(4/3)/Pi=6.93

1/6.93 = 0.1442

1-0.1442=0.855

Sin(-1)(0.855)=58.84 degrees=1.027 rads=t

10. CONCLUSION

THE CRITICAL LINDE FOR THE REIMANN HYPOTHESIS IS y=e^z+Pi

REFERENCES

[1] ELEMENTS OF SOIL MECHANICS, G. N. SMITH.

[2] ASTROTHEOLOGY, CUSACK'S UNIVERSE, BLOG, BY AUTHOR

Citation: PAUL T E CUSACK, (2019). The Reimann Hypothesis Clay Institute Millenium Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(11), pp. 20-24. http://dx.doi.org/10.20431/2347 -3142.0711004

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.