The Reimann Hypothesis Clay Institute Millenium Problem Solution

PAUL T E CUSACK*
Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

*Corresponding Author: PAUL T E CUSACK, Independent Researcher, BSc E, DULE, 1641 Sandy Point Rd, Saint John, NB, Canada E2K 5E8, Canada

Abstract

This paper explains how the Riemann Hypothesis is a critical line which results from the Golden Mean Parabola skewed at 60 degrees. The equation gives the roots to the serial of Prime Numbers. The 6-0 degree failure Plane comes from Soil Physics.

1. Introduction

The Riemann zeta function $\zeta(s)$ is a function whose argument s may be any complex number other than 1 , and whose values are also complex. It has zeros at the negative even integers; that is, $\zeta(s)=0$ when s is one of $-2,-4,-6, \ldots$. These are called its trivial zeros. However, the negative even integers are not the only values for which the zeta function is zero. The other ones are called non-trivial zeros. The Riemann hypothesis is concerned with the locations of these non-trivial zeros, and states that:
The real part of every non-trivial zero of the Riemann zeta function is $1 / 2$.
Thus, if the hypothesis is correct, all the non-trivial zeros lie on the critical line consisting of the complex numbers $1 / 2+i t$, where t is areal number and i is the imaginary unit.

WIKIPEDIA

ILLUSTRATION 1 MOHR'S CIRCLE

2. SOIL MECHANICS

From Soil Mechanics we know from Mohr-Coulomb Failure:
Tau $=\mathrm{c}+$ sigma* $\tan (45+\mathrm{Phi} / 2)$
$26.667=0+($ sqrt $3 * \tan (45+30 / 2)$
$=26.667 /$ sqrt $3 \mathrm{~h}=0.1539$
($\mathrm{F}=26.667$ is the shear failure pressure. Refer to Astrotheology Cusack's Model of the Universe) Tau $=\mathrm{F}=\sin$ thet $=88.5=\mathrm{k}=$ Permeability of the Universe
So,
$\mathrm{Au} / 2=\sin 60$ degrees
$\left.Z^{\wedge} 2+(\text { sqrt } 3)^{\wedge} 2\right] / 2=\sin 60$
$\mathrm{Z}=0.5774=1 /$ sqrt $3=\tan 30$ degrees
$\mathrm{Y}=\operatorname{tau}=1 / \tan 30$ degrees $=\cot 30$ degrees $=$ sqrt $3=\tan 60$
$\mathrm{y} / \mathrm{z}=$ rise $/$ run $=\mathrm{m}$ in the $\mathrm{Y}-\mathrm{z}$ PLANE
Tan $60=Y / z=3.4641 / 10=e^{\wedge} Z$
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{Z}$
This is the critical line of the Riemann Hypothesis.

ILLUSTRATION 2 GOLDEN MEAN SKEWED PARABOLA

3. Equation of a Plane

$a x+b y+c z=0$
EQUATION OF GOLDEN MEAN PARABOLA
$\mathrm{X}^{\wedge} 2-\mathrm{x}-1=0$
Setting these equal to the skewed plane and the Energy-Time Parabola:
$\mathrm{Ax}+\mathrm{by}=\sin 60{ }^{*} \mathrm{z}=\mathrm{x}^{\wedge} 2-\mathrm{x}-1$
There are 5 unknowns; therefore 5 coincident points are necessary. They are:
GOLDEN MEAN ROOTS
$\mathrm{X}=1.618, \mathrm{Y}=0, \mathrm{Z}=0$ (POINT 1)
$\mathrm{X}=-0, .618, \mathrm{Y}=0, \mathrm{Z}=0$ (POINT 2)
MINIMUM POINT OF PARABOLA:
$\mathrm{X}=0.5, \mathrm{Y}=-1.2533, \mathrm{Z}=0$ (POINT 3)
X-Y PLANE
$\mathrm{X}=1, \mathrm{Y}=\mathrm{O}, \mathrm{Z}=0$ (POINT 4)

4. Critical Line

$\mathrm{Y}=\mathrm{mz}+\mathrm{b}$
2,0,1
$0=m(1)+b$
$B=-m$
Rise over run=m=2/-1=-2
$Y=2-2 z$
$\mathrm{X}=2, \mathrm{Y}=0, \mathrm{Z}=1$ (POINT 5)
5. Solve System of 5 EqUATIONS; 5 Unknowns
$\mathrm{A}=-1$
$\mathrm{B}=-0.4892 \sim-0.5$
$\mathrm{Z}=\mathrm{sqrt} 2$
$\mathrm{Y}=-0.8154$
$\mathrm{X}=0.9087$
$Y=2-2 z$
$A(1)+b(0)+\sin 60$ degrees $(0)=1 \wedge 2-1-1$
$A=-1$
$\mathrm{A}(1 / 2)+\mathrm{b}(-1.2533)+\sin 60(0)=(1 / 2)^{\wedge} 2-1 / 2-1$
$B=0.4892 \sim-1 / 2$
$A x+b y+\sin 60 z=1.618^{\wedge} 2-1.618-1$
$0.8666 z-0.4892 y=1.618$
And
$Y=2-2 z$
$\mathrm{Y}=2-2$ (sqrt 2)
$\mathrm{Y}=-0.8154$
$0.866 \mathrm{z}(0.4892(2-2 z)=1.618$
Z=sqrt 2
Ax $+b y+\sin 60(z)=x^{\wedge} 2-x-1$
$-x+b y+\sin 60 z=x \wedge 2-x-1$
$(-1 / 2)(0.8154)+0.866($ sqrt 2$)=x^{\wedge} 2$
$\mathrm{X}=0.0987$
6. Critical Line
$\mathrm{m}=-2 / 1=-2$
$\mathrm{Y}=\mathrm{mx}+\mathrm{b}$
$\mathrm{Y}=2-2 \mathrm{z}$
$\mathrm{Y}=2-2(1 / 2)$
$y=1$
$Y^{\prime}=-2$
$y-y^{\prime}-2 z$
$y=y^{\prime}-2(1 / 2)$
$y y^{\prime}=-1$
$\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=1 / 2$
International Journal of Scientific and Innovative Mathematical Research (IJSIMR)
$E=E^{\prime}-E$
$E^{\prime}=2 E$
$\mathrm{E}=\mathrm{E}^{\prime} / 2$
$Y=1 / 2 y^{\prime}$
$\mathrm{Y}=\mathrm{y}$ '
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{z}$
$\mathrm{Y}=\mathrm{y}^{\prime}\left(2 \mathrm{e}^{\wedge} \mathrm{z}\right)$
$\mathrm{Y}=\mathrm{y}$ ' +C 1
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{z}$
$Y=e^{\wedge} z$
$\mathrm{E}^{\wedge} 1=\mathrm{e}^{\wedge}(-1)+\mathrm{C} 1$
C1 $=0.23504$
Number System based on 10:
Ln C1)=3.157~Pi
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{z}+\operatorname{Ln}(\mathrm{Pi})$
$\mathbf{Y}=\mathbf{e}^{\wedge} \mathbf{z}+\mathbf{P i}$
7. This is the Critical Line of Prime Numbers

PRIME NUMBERS CALCULATED FROM EQUATION
$\mathrm{Y}=\mathrm{e}^{\wedge} \mathrm{z}+\mathrm{Pi}$
$Y^{\prime}=e^{\wedge} z$
$\mathrm{Y}=\mathrm{y}^{\prime}=\mathrm{m}=-2$
$X^{\wedge} 2-x-1=0$
(-2)-2(-2)-1=5 PRIME
$Z^{\wedge} 2-z-1=-3$
$\mathrm{Z}=1$, -3 (Prime)
$Z^{\wedge} 2-z-1=-7$
$\mathrm{Z}=-2,3$
$Z^{\wedge} 2-z-1=-11$
$\mathrm{Z}=,-4,3$
etc.
THIS, THEN IS THE CRITICAL LINE OF THE SOLUTION TO THE PRIME NUMBERS ACCORDING TO THE REINMANN HYPOTHESIS.
8. Imaginary Number=Conjugate of the Golden Mean

Now,
1/2+it
$1 / 2+($ sqrt -1$) \mathrm{z}$
GOLDEN MEAN EQUATION:
$\mathrm{X}=1 /[\mathrm{X}-1]$
$1+\mathrm{i}=1 /[1+\mathrm{i}]$
$\mathrm{X}=1 /[\mathrm{x}-1]$
$(1+i)=1 /[1+i)-1$
$(1+\mathrm{i})=1 / \mathrm{i}$
$(1+\mathrm{i}) * \mathrm{i}=1$
$\mathrm{I}^{\wedge} 2-\mathrm{i}-1=0$
Roots (Golden Mean and the Conjugate of the Golden Mean)
1.618,-- 0.618
$\mathrm{I}=$ sqrt $(-1)=-0.618$
THE UIMAGINARY NUMBER IS EQUAL TO -0.618
$1 / 2+(-0.618)($ sqrt 2$)$
$=0.374=1 / \sin 60$ degrees
$(1 / \mathrm{m})+\mathrm{i}^{*} 1 / \sin 60$ degrees $)=1 / 2+$ it

9. The Universe

The Universe exists where the only real numbers=s are Prime Numbers. Since,
$Y=y$ ' for our universe,
And
$y=y^{\prime}=e^{\wedge} x$
CRITICAL LINE
$\left(\mathrm{e}^{\wedge} \mathrm{z}+\mathrm{Pi}\right) / \mathrm{e}^{\wedge} \mathrm{z}$
$1+\mathrm{e}^{\wedge} \mathrm{z} / \mathrm{Pi}$
All Physical Quantities should be divided as such.
$1+\mathrm{e}^{\wedge}(4 / 3) / \mathrm{Pi}=6.93$
$1 / 6.93=0.1442$
$1-0.1442=0.855$
$\operatorname{Sin}(-1)(0.855)=58.84$ degrees $=1.027$ rads $=\mathrm{t}$
10. CONCLUSION

THE CRITICAL LINDE FOR THE REIMANN HYPOTHESIS IS y=e^z+Pi
REFERENCES
[1] ELEMENTS OF SOIL MECHANICS, G. N. SMITH.
[2] ASTROTHEOLOGY, CUSACK'S UNIVERSE, BLOG, BY AUTHOR

Citation: PAUL T E CUSACK, (2019). The Reimann Hypothesis Clay Institute Millenium Problem Solution. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(11), pp. 20-24. http://dx.doi.org/ 10.20431/2347-3142.0711004

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

