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Abstract: This paper deals with the existence of almost automorphic solutions to a nonhomogeneous singular
system of differential equations

Eu'(t) + Fu(t) = g(t),for all t € R,

where E, F are m x m-square matrices with complex entries such that: det(E) = 0, det(F) f # 0 and g is an
almost automorphic function. To do this, we make use of various tools and techniques from functional analysis.
To illustrate our abstract results, we discuss some examples.
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1. INTRODUCTION

Nearly a century ago, the concept of periodicity was in full swing. It was not until 1925
that the work of the Danish mathematician Harald August Bohr gave rise to the concept
of almost periodicity. This concept comes to generalize the notion of periodicity. At first
glance, a periodic function is a function that repeats its values at regular intervals or
periods. This paper beginswith the introduction of periodic, almost periodic and almost
automorphic functions. Several classical examples show that the almost periodic functions
are a generalization of periodic functions and that the almost automorphic functions are a
generalization of almost periodic functions.

Several interesting works deal with the concept of almost automorphy, namely the book
by Diagana [8] and that of N’Guerekata [12] and the series of papers by Shen and Yi [14].

In this Thesis, we study the following system of singular differential equations,

Eu’(t) + Fu(t) = g(t), for all t e R, (1.2)
where E, F are m m square matrices with complex entries and the function g(t) is an almost
automorphic function? In this work, we suppose that E is singular (det(E) = 0) and that F
is invertible.

In view of the problem, in this paper, we shall examine the following point: under what
conditions does (1.1) have an almost automorphic (mild, classical) solution, possibly
unique?

Several methods and techniques are used for the resolution to Eq. (1.1). In our case, we
use a lot of the techniques developed in the paper of Diagana and Mbaye [9].

It should be noted that the concept of almost automorphy was initiated by Bochner (1955).
Most of the definitions and concepts used in this section come from the books by Diagana
[8] and that of N’Guerekata [12]. For more on these classes of functions and related issues,
we refer the reader to the above-mentioned books.

In the sequel, the notation (X, . |) tands for a Banach space. Similarly, B(R, X), C(R, X)
and BC(R, X) which stand respectively for the family of bounded functions from R to X,
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the family of continuous functions from Rto X and the Banach space of bounded
continuous functions from X to Y , equipped with corresponding sup norm defined by
Ifle. ;= sup If (HI.

In doing so, this paper is organized in six segtipns, the first being the present introduction.
In the second section, we define the concept of almost automorphic function and give its
different properties. In the third section, we study the conditions under which we obtain
the existence of automorphic solutions to Eq. (1.1). In the fourth section, we use an
example to illustrate our results. Finally, in conclusion, we discuss future work and open
problems.

1.1. Periodic and Almost Periodic Functions

In this subsection we recall the concepts of periodicity and almost periodicity, particular
cases of almost automorphy.

Définition 1.1.1. If f : B — X is a function, we denote the translate of f by s € B the function
defined by
Raf(t) == f{t + s). ¥Vt € K.

Définition 1.1.2 (Periodic Function). A function f € C{R, X)) is said to be periodic, if there
erists T = [, such that:

R f(t) = f(t), forallt e R. (1.2)
In this case, 7 is called a period of the function f.
Exemple 1.1.1. Functions such as fi{t) = %siu{ﬂf}, hif) =1 — cos(d), g(lor) = —2cos(dx + 5)

and cis(t) = cos(t) + isin(t) are periodic. It is easy to verify that the number v erisis for each of
these three functions.

The graphs of the periodic function Sin (in blue) and Cos (in red) are given in Fig
Exemple 1.1.2. Let us take the function defined as follows:

fit) = sin(+v2t) + v3 cos t. (1.3)

The function in Eq.{1.1.2)), although continuous, is not periodic.

Figurel. Graphs of the 2x periodic functions Cosine and Sine

Définition 1.1.3 ([3], []). Let f € C(E, X ). We say that f is (Bohr) almost periodic func-
tion if for each € = 0 , there exists I(€) > 0, such that ¥ a € I, 37 € [a,a + ] with the property:

sup [ Rrf(t) — f (1)l < e (1.4)

T is then called an e-period or e-translation.

The collection (space) of almost periodic functions f : B — X will be denoted AP(R. X ) or
simply AFP(X).
Let us recall that a trigonometric polynomial is any function of the following form:

mn
Th(t) = E C!.,L-f.'i)”‘!_.
k=D

L
= Zcak(truﬁ{hk.t}—l—i;-sirl{}m.t‘_l‘_l_. (1.5)
k=0
where Ap = B; ap  C.

Définition 1.1.4 ([T]). A function f = AP(X) if and only if there exists a trigonometric polyno-
mial T,, such that:
I £(£) — Tul(t) ]| = 0. (1.6)

lim
T — OO
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Définition 1.1.5 (Bochner [2]). Let f € BC(R,X). We say that f is a (Boechner) almost
periodic function if any sequence (s )new of real numbers, there erists a subsequence (sp)nen
such that f(t + s,) converges uniformly in t € &, i.e., 3 g € BC(R, X)) such that:

lim sup|| fit+ s.) —g(t)|| = 0. (1.7)
— o0 f—ER

Théoréme 1.1.1 ([Tl}. A function f € BC(R,X) is Bohr almost periodic if and only if it is

Bochner almost periodic.

Rémarque 1.1.1. There erist almost periodic functions that are not periodic functions.

Figure2. Graph of the fonction 1.1.2

Proof. In what follows we give an example of an almost periodic function which is not periodic.
So, set f(t) = e 4+ &7t and suppose that there exists a number 7 € B, such that
R.f(t) = fit).vt € R. Then we have what follows:

Rof(t) == f(r +1) = f(t)-

Therefore,
f_,1'['.!'+t,- 1 ¢1'N1T+“ — Eﬂ —I—-I‘.'i":f'.
€i|T+t:' o f’ff + chrlr+i} _ !?i":! =0
{E,;'rr _ l_;le?ft + [ch‘rr _ 1}!?3.‘:! =10, [-1-81]

Since e and "™ are linear independent, then ¢ — 1 = 0 and " — 1 = () which imply that,
e = 1,7 = 1. Therefore, 7 must satisty the conditions that 7 = &7
Then we have T = 2k, wr = 2hw where k& and h are integers.

This means that
T= 2km,
T=2hZT = 2/

which is impossible. Consequently, f is almost periodic and not periodic.

It should be mentioned that if the convergence in Definition ?? is uniform in, ¢ = &, then
we get the almost periodicity of the function f . Thus, the concept of almost automorphy
is more general than the concept of almost periodicity

Example 1.1.3. Here are the most common examples of almost automorphic functions:
e Fuvery almaost periodic function is almost automorphic function.
e f(t) = cos (%) , where p(t) = 2 + sinat + sin 5t with af~" is an irmational number.

o The famous example from Veech ([13]),

fe8) — 2 4 pit 4 itvE
(}_|2+Cﬂ+€itw"§|

for all t € R. (1.0)

The collection (space) of almost antomorphic functions f : [ — X will be denoted AA{R, X)
or simply AA(X).

1.2. Properties of Almost Automorphic Functions
In this subsection, we discuss basic properties of almost automorphic functions.
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Théoréme 1.2.1. If f € AA(X),a,8 € R, then:
(i) af € AA(X);

(i) t —s fla +1t) € AA(X);

(iii) t —s flat) € AA(X), in particular t —s f(—t) € AA(X).

Proof. Let (s, )nen be a sequence of real nnmbers. Since f € AA(X), we can extract a subsequence
(Sn)nem C (85 )nep. such that:
Jim  f(E+sn) = g(t)

and
lim_g(t — sa) = /(1)
for each t € E.
(i) Clearly,
im af(t+s.) =a lim f(t+sa)
= ag(t)
and
HEL ag(t —sy) = a'n@)]mg[t — sn)
= af(t),
for each t € R.
Thus af € AA(X).
And

(ii) Let us prove that t —— f, == flee +t) € AA(X).

falt +5,) = flaa +t + 5,), put @ + ¢t = 5, then, it follows
Iim falt+s.)= lim fla4+t+ s5,.)
n—s T — o

E==

= lim fi{s+ sa)
T — O

=g(s) = gla +t)

and
g(t — sp) = flae+t — sp), then it follows
Hm g(t—s.)= lm gla4+t—s.)
= lm g{s—s,)
To——% o
= fa(s) = flo + ¢},
for ¢t = R.

Hence, ¢t —— fla+1t) € AA{X).
(1i1) Let us prove that ¢ —— flat) e AA(X ).

Fla(t + 5,)) = flot — asy), put as,, = o,. then, it follows

HE}-H f{ﬂ[f —+ Sn}} = RE?@ f{ﬂf - G—n}
= glat)

glex(t — s5,)1) = glaft — s, ), then it follows

litn  Flex(t — s,31) = lim gloft — oy, )
= flat),
for ¢+ < H.
In particular if o« = —1, then &£ —— F{—¢) = AA[(X ).
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Théoréeme 1.2.2. Let f.g € AA(X), then sum f + g belongs to AA(X).

Proof. Since f € AA(X), for any sequence (s, ),cn of real numbers, we can extract a subsequence
{Sjn)nEN of {Sg}nEN such that

T f(t+ ) = ha(t)

and
lim_ha(t—s,) = f(t)

L]

for each t € K.
Since g € AA(X), we can extract a subsequence (s, )nen of (5], )nen such that

lim g(t + sq) = ha(t)

and
hm ha(t - sn) = g(t)
for each t € K.
Letusput h=f +g.
Now,
(f+ag)t+s,) = flt+s,)+g(t+s,), then it follows
(f+g)(t+s,)=f(t+s,)+g(t+s,), then it follows
i h(t4+se) = lm [0+ ) +(t+ )]
= lim f(t+s,)+ hm g(t+ sq)
= hi(t) + ha(t)
= @(t) (by putting ¢ = h1 + ha)
and

ot — sp) = h(t — 8,) + ha(t — s,), then it follows

lim (=)= lim_[hy(t - 5,) + hft - 5,)]
nli_}mmc,s{f —Sn) = nh_}nLﬁ ha(t —sn) + 'F.!-].E}nuu ha(t — sy)
= f(t) +4(t).
for each t € X, hence h = f + g € AA(Y).
Théoreme 1.2.3. If f € AA(X), then f is a bounded, that is

sup | f(t)]| = M < co. (1.10)
tcR

Proof. This proof 1s taken from 12

Let us prove it by contradiction. Suppose that sup || f(t)|| = oo, then there exists a sequence of
teR

reals (s7,)nen such that lim M) = e

Since, we know by hypothesis that f € AA(X), we can then extract a subsequence (&), )nen, such
that t1'1m f(sn) = @ exists, this implies that tlim |[f(sn)|| = [le]l = M < oc, which contradicts

our hypothesis.

Théoréme 1.2.4 1 12 . The space (AA(X),|.|) s a Banach space.
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1.3. Additional Properties of Almost Automorphic Functions

In subsection we have listed some of the elementary properties {addition, multiplication)
of almost automorphic functions. In this subsection, we study other ways to construct almost
automorphic functions from a given almost antomorphic function.

Théoréme 1.3.1 ([IZ]). Let XY be two Banach spaces such that f : B —— X an almost auto-
morphic function. If h : X —— Y is a continuwous function, then the compositionfunction defined
by

(hef)E) =h(f(t)): R+——Y

belongs to AA(R,Y).

Proof. Let us take (s, )nep an arbitrary sequence of real numbers. Since f € AA(X ), there exists
a subsequence (Sn)nen C (S )nem such that g(t) ;= lm f(t + sn) and f(t) = Hm gt — s,), for
all ¢t = R.

Let us consider:

(ho filt+s,)=h(f(t+s,)), Since h is continuous, then
lim (ho f)(t+s,) = lim_ h(f(t+s,))
(e )
= hig(t))
= (h e g)(t),
and similarly, let us consider:
(hog)(t —sn)
lim_(hog)(t —s.) = lim_h(g(t — sn))
= h( Jim_g(t— )
= h(f(t))
= (ho f)(1)
for each ¢ € K, hence (ho f) € AA(Y).

hig(t — sn)), Since h is continuous, then

Lemme 1.3.1 ([IZ]). Let (fnlnen be a seguence of almost automorphic functions such that there
erists a function f e C(R, X} with ||fr, — fllee — 0, asn — oo then f € AA(X).

Théoréme 1.3.2. Let f = AA(X) and and suppose that its derivative ' erists and is uniformiy
continuous on K. Then ' = AA(X).

Proof. By assumption, f is almost automorphic. Suppose that f° a uniformely continuous, i.e. for
every every real number s > 0 there exists & = 0 such that for every ..tz € X with [t; — 2] < &,
we have that || f(t.) — Flt=)]].

. 1
Take an arbitrary t € R and 4 > o we get:

n F P+ — F@)ds = n (r(t+3)-10) -re.

Then it follows:
n(r(t+2)—s0) - rel <n f% If/ (£ + ) — £ (2)]] ds

n - 0
Wehave [t 4+ s —t]| =5 <

Put (1) =n (£ (¢4 1) — 1) — 1.

Yd = %,‘v"n = F %) + 1, where F'(x) is the integer part of x, i.e. is the biggest integer that is

less or equal than .
We then obtain ||fn — f'(t)|| < =, that implies that Hm fn(¢) = f'(¢).
n—
So, fn is a sequence of almost auntomorphic function, by using Lemma 1.3.1 we conclude that
f' is also almost automorphic.

Théoréme 1.3.3 (Bugajewski-Diagana [5], Theorem 4.5 in [8]). . Let f e AA(X). If h € LY(R).
where LY(R) is a vector space of classes of functions once integrable in the sense of Lebesgue in
[R). Then the convolution product defined by

(f=R)(t) = /-_m. filo)hit — o) deo
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belongs to AA(X).

Proof. Since f is continuous and h € L'(R), it is not hard to see that t — ( f*h)(t) is continuous.

Let us take (5], )nem an arbitrary sequence of real numbers. Since f € 44(X), there exists a sub-
sequence (Sn)nch C (s)Jnewsuchthat g(t — o) := lim f(t —o+4sy)and fit —o) = lim gt —o — s,),
for all t,0 € R.

Let us consider

(f*h)(f+sn}=[m fit — o+ sy)hicr)de for all t € K.

Clearly || f(t — o + sa)h(7)]| = || f|l |B(7)| for each t, 0 € R.

Lo ]

n@m(f*h)(f+5“}= limn flt —o+ s, )h(o)do

Te—F o0
—

/ lim f(t — o + sp)h(e)do (by Lebesgue’s dominated
convergence theorem)

_ /m g(t — o)h(o) do

—d

= (g * h)(t)

and similarly, let us consider:

(g*h)(t—s,) = /m g(t —a — sy )hio)de for all t € R.

— o3

Clearly ||g(t — o — sp)hie)|| < gl [h(a]] for each t,0 € R.

lim (g*h)(t—s,) = lim f glt —a — s )hio)da

= f lim g(t —o —sqp)h(o)do (by Lebesgue’s dominated

aa —F o0

convergence theorem)
= f flt —o)h{c)do
— (F*h)(E).
for each t € R, hence (f »h) € AA(X).
Théoréme 1.3.4 ([15]). Let f € AA(R). Then the integral

F(t) = L t f(s)ds

belomgs to AA(R) if and only if F belongs to B(I).

Proof. If we suppose that F' 1s almost automorphic, clearly F is bounded.
Now, if suppose the converse, 1.e. we suppose that F is bounded, that is ||[F(s)|| < M < o or

sup = M < cc for t € K, and prove that F 1s almost automorphic.
tcR
Let (5] )nenm be a sequence of real numbers.

Since f € AA(X), we can then extract a subsequence (s, )nen of (] Jnen such that:

Timf(s+5,) = g(s)

and
lim g(s —sn) = f(s), forall s € R.

Let us consider the integral
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I=£{f[s+sn)ds. (1.11)

By putting s + s,, = o, we obtain then:

E+5y,
I = flo)do

2n

=F(t+s,)— Fi(s,),
where F 1s the primitive of f.

Therefore,
t
f fls+sn)ds = F(t +s5,) — F(s.).
o
which yields

F(t + sp) = F(sn) + /: F(s + sp)ds. (1.12)

By introducing the limite, as n tends to infinity, we hawve:
t
lim F(t+ sp)= lim F(sp,)})+ lhm f fis 4+ sn)ds
L— e T —r e oo f,o
t
= lim Fisg)+ f Iim fis+ sn)ds

t
=K, + f g(s)ds since the limit lim F(s,) exists and f £ AA(R)
0 n— O

= p(t}).

s Let us consider now the p(f — s,).

£
Therefore, using ([1.11)) and ({1.12]), we have: p(t — s,) = p(sn) + f g(s)ds Now, let us com-
0
pute the limit of p(t — s5,):

E
Im p{t —sp)l= lm p{sy)+ f lim g{s— sp)ds

i
=K, + f fis)ds
a
= G(t).
Let us prove now that o is null. If we should prove that, the we would establish that F'(t)

is almost antomorphic, which means:

lim lim esxasts for all & € R.
TI— 00 Tl — oD

Let us denote the operation of taking double limite by .4, i.e.

AF(t) = G(t) that implies
AAF(t) = A*F(t) = AG(t)
= Ky + Ky + F(t).

By induction, we have:

ARF(t) = nkK2 + F(t)

and
|A™F(t)] == M, for ¢ € R.

It yields,

|A"F(t)] = [nK2 + F(t)]
|A"F(t)] = [nK2| + |F ()|
So [nk,| = [ATF(t)| + |F(t)]

=M+ M

= 2M.

This gives contradiction if K5 # (0, because the left-hand side will become larger and larger
as n increases.

Hence Ko =0, s0 lim = F(t).

T— o
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Therefore, we have just established that F is almost automorphic.

2. Mains Results
2.1. Mild and Classical Solutions
Consider the differential equation

Ww(t) = Au(t) + f(t),te R (2.1)
where A is an n xn square matrix and ¥ : R — X is a continuous function.

Définition 2.1.1. A continuous function u: R— C" is said to be a classical solution to (2.1)

if uis of class C! and (2.1) holds.

Définition 2.1.2. A continuous function u: R — C" is called a mild solution to (2.1) if

i
u(t) = et "lu(r) +f eMt=2l f(s)ds forall t,seR, t>s.
P

Rémarque 2.1.1. 1. Any classical solution u to (2.1) is a mild solution.
2. A mild solution u to (2.1) is a classical solution if and only if u is of class C* .

In view of the above, it is easy to see that every mild solution to Eqg. (2.1) is a classical
solution.

Such a mild/classical solution will be called a solution.
2.2. Existence of Almost Automorphic Solutions
Inthis subsection, we discuss the existence of almost automorphic solutions to the following
singular systems of differential equations:
Eu'(t) + Fu(t) = g(t),for all t € R, (2.2)
where E,F € M(m,C) where det(E) =0 and det(F) # 0, and g € AA(C™)

2.2.1 Resolution of the problem

Let us define the matrix T = EF~! : C™ — C™.
Following Favini et al. ([I0]) and letting

Fu(t) = v(t), (2.3)
then we have:
F1Fu( (t)y=F~ Yo(t), (since F is invertible)
u(t) = F~1o(t).
Taking the derivative, we have:
u'(t) = F~1'(t),
Eu'(t) = EF~''(t).

Hence
Ed'(t) =T (t).
We reduce Eq.(2.2)) to the following equation,

Tv'(t) +v(t) = g(t), forall t € R. (2.4)

The restriction of T to its range (i.e. R(T') = X,) is invertible. Hence, we can write T as the
following block diagonal matrix
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M-t O
T=( 0 0 )

where M and the zero matrix, are k x k square matrices on ,, with k is the rank of the matrix

T.

Since T is a square matrix, then it generates a Cy-semigroup on ;.

Henee, it is possible to decompose (using the block diagonal form of T') g respectively through
the projection Py, onto X, and the projection Py, onto X, (N(T) = i) .

g= (Sl‘l = Pm_f;')‘. that implies that:

g2 = P9
M=t 0\ (w), (n)_ (o
o 0 vy va)  \ga)’
We can now write Eq.(2.4)) in the following form:

ﬂ.«f_liF{[:t}—Fi’l[:f} = o [tjs E
v2(t) = ga(t)

where vy (#) and v2(t) are m x 1 vectors.

We note that the system of equations in v (t) in Eq.(2.5), and its mild solution v(t) = (:1%3)
2

1= given as follows:
t
vi(t) = e MU=y () + M'f e~M(t=5)g, (s)ds, (2.6)
v2(t) = ga(t)

forall t,c € R and ¢ = o.
By multiplying the system ([2.6) by the quantity e~ we notice that the problem is equivalent
to the following system:

t
E—uivl(f} — e—:'l'f(i—a]l:t—l:l](e—atvl{g)j + —Hf'ff E—ﬁ'fl:t—l:ljl:i—sj(E—ﬂagl{s}]dsj [2 ?]
e~ M, (t) = e gy(t)

forallt,cc R and t = o.
As mentioned in [J], we can always choose a = 0 so that e~ (M~a)t i5 exponentially stable, i.e.
the choice of @ must be made so that there exist K > 1 and w = 0, such that:

lle=™t|| < Ke ! for all t = 0. (2.8)

Théoréme 2.2.1. Under previous assumptions, if g € AA(C™), then Eq.(2.2) has a unigue almaost
automorphic solution.

Proof. We are going to proceed in three steps: (i} we prove existence of a solution, (ii) we prove
that the solution is almeost automorphic, and (iil) we prove the unigqueness of the solution.

# Existence
From Eq.(2.5]), we have the following:

M7IMuvi(t) + Muv, (t) = Mg, (t),
vi(t) + Mo (t) = Mg (t).

Let us now multiply the equation by ™t we get then:

E.l'l'ff-v;{t] + Ehft.ﬁffvl{f) — Ch-ft.ﬂn’fgl (EJ-

On the other hand,
(eMtv,(t)) = eMtv](t) + MeMtv ().
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Then, we have
I[L,J'I.rf.vl{t]’]" — {.J'Iffﬁfgl [t]

t ' t
f (eM=vy(s)) ds=f M Mg (s)ds,

T

i
Mol =1 [ Mogi(s)ds

T

t
{"”il'l{t;l _ E?,J|I.|I--E|' i lrg} — ﬂ_{f ['ﬁ'rgg]_{.g_:'d-‘.':n_

t
Lll'nfi,u] {I;I — {Il'nft?,u] {ﬂ-} 4+ ﬂ._{[ r_-"'fsgl{.g}ds-

o

Therefore,

v (t) = e My (o) + M'f e~ M2y, (s)ds.

o
Almost automorphy of the solution

The solution expression of (2.5) is given by vi and vz. To prove that this solution is almost
automorphic, we must prove that vi and v, are almost automorphic.

Now, v is clearly almost automorphic given the almost automorphy of g.. We now have
to prove that v; is almost automorphic.

It can be shown the only bounded mild solution to Eq.(2.5) for v is given by:
t
v (t) = Mf e~ Mlt=2)g, (s)ds = MG(t).

Since the projecton Px, 1s continuous, it follows that gy 15 an almost automorphic function
on Xq.

Let us prove now that, for each r < t the integral v (t) is almost automorphic.

t
Let us first consider G(t) = f e~ Mt=2) g, (s)ds, defined as

F— —

i t
[ e Mi=2g (s)ds = lim f e M=2)g (s)ds.
— 0 "

¢
We see clearly for each r < t the integral f e~Mit-s)g (s)ds exists. Moreover, we have
L

< £||g] ||oc, for all m <t

jwl

i
/ c"”':f'“g](s}ds

"

¢
which shows that [ e~ Mit=slg (s) is absolutely convergent.

Thus, let (s] )nen be an arbitrary sequence of real numbers. Since g; an almost automorphic
function, we can extract a subsequence

(Sn)nen C (8] Jnew such that the following properties hold:

h(t)= lim g, (t + s5) (2.9)
1s well defined for each ¢ € B and
lim At —s,) = m(t) (2.10)
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forallt e R.
Now consider
f4+5n . )
Glrt + Hﬁ} = f r..—fl.r'._!—-‘!n —Fs_ly] {-.‘::}d,‘;

By putting 0 = s — s,,. we obtain:

t
(__rr'[f +s5,) = f e~ M ”_Jlgl (o + s,)do

oo

t
— f E.:—J‘ufli—arlgﬂ{g}dg

where (gn)nen.

We have also K
|Gt + sn)|| < —

el

g1 ||ec, ¥ € M.

and by coninuity of semigroup, e M*=7g (7} —s e~ M=7I}(5), as n — oo for each
g R and any t = &.

i
lim G(t+s,)= lim f e~ Mt—olg (g)do.

To—F o T —F 00

Using Lebesgue’s dominated convergence theorem, we obtain:

£
lim G(t+s,) = / e~ M=) fim dn (7 )der (By continuity of the semigroup)
=

n—Fo0 MN—F30

t
:/ e~ M= pi7)de (By using 2.9))
=y(t),vi € K.
We can show by similar way that

ylt —s,) — G(t) as n — oo,

for each t € B. This shows that G £ AA().
This means that y(t — s,) — G(t) as n — co. Hence, () is an almost automorphic
function.

Since M is a continuous transformation, then vi = MG(t) is is almost automorphic. This
concludes the proof.

The theorem being proved, we can now begin the resolution of systems of second-order differ-
ential equations.

2.3.Results for Systems of Second-Order Differential Equations

In the previous subsection, we have studied and obtained the existence and the uniqueness
of the almost automorphic solution to a system of first-order differential equations. In this
subsection, we study the system:

Az"(t) + Bz'(t) + Cz(t) = f(t), (2.11)

where A, B, C are m x m-square matrices with complex entries such that: det(A) = O,
and f € AA(CZM).
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2.3.1 Resolution of the problem

The strategy we use here consists of rewriting Eq. (2.11) as a system of first-order differential
equations (See [6] and [1]).

After rewriting (2.11) in the form (2.12), we can now solve it by using the result obtained
the in the previous section.

. . . . . T T .
Suppose that = : R — C™ is a twice differenciable, and set u = (.rl) = (.r’)' then it follows:
2

Eu'(t) + Fu(t) = L(t) (2.12)

) (B Ay . (C O} [ f
where F = (I O)' F = (O —I) and [ = ({.))_

Where O means the zero matrix and | the identity matrix.

By having the form (2.12), we can use the strategy developped in the above section to find
the solution.

It should be noted that A, B and C must be so that A be a simple pole of the resolvent

R, T):= (M =T )=, where T a matrix resulting form the transformation of Eq.(2.12) by
following the steps of the section 2.2.

Hence, the following theorem:

Théoréme 2.3.1. Under previous assumptions, if £ € AA(C™), then Eq. (2.11) has a unique solution,
and this solution is almost automorphic.

The proof of Theorem 2.3.1 follows along the same lines as that Theorem 2.2.1 and hence
omitted.

3. Example

To apply our theoretical results, we consider the following system of differential equations
[11]

Eu'(t) 4+ Fu(t)=g(t),t e R (3.1)
; 2 4 0 1Y _ ,ra
where: m =2, and F = | ] | ceM(2,C),F= 1 1) € M(2,C)
z
i 1
cos (E—Si.Tl:\_-"'gE:+!-:i[]l:v"'\'_5f:I]
and g(t) = e AA(C?).

cos (!—sin: 1 ::-Hin-;ﬁt]]
Clearly, g(t) has coefficients which are neither periodic nor almost periodic, but almost auto-
morphic functions.
uy (t)

Let us find u(f) = (u fa“)' Now, we have T = EF ! =
Z\E)

Hence, the system becomes:

o
[ o e

). Set Fu(t) = v(t).

[ P ]

. 1
C0s - - —
z-]{r:l)’ (:-]{f}) (svmrvmsmmm)

. 2 2
Tv'(t) + v(t) = g(t) = .
L) - Wi git) % I_:!I 1'2':\?:' !|!|:f:| |
) ) cos (‘2—51]1: 1t} +sin( \_.r'.',t:.)
Applying the decomposition of the space, the kernel is

Xy = N(T') = span ((_11

Let 15 = (j) and V; = (_LL)

It is easy to see that H(T') = span ((f)) .

Clearly, W = {V,V1} is an orthogonal basis for C2.
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The matrix associated to W is given by
4 —1
=)
If we express T in the new basis W = {Vo, V1}, we get:
. A
= (D [})

Hence, M~" = (Z) which yields M = (2)
Let us find g and g2, where

() (@ @) @ (7T

1
= (2+=—:in{-|.t.]+sin|v"iz|)

) 1
cos
re (2+ﬁimj1..-"‘2t.]+sm|ﬁu)

|
et
o Sel
o]

. 1
s (2+aimj-|.t.]+sm|v"i¢ ) )

1 i | 1
5= COs — — - —+ == cos — — =
L7 (2+511L|ﬁ!|+e—:|nkv"’.‘_ﬂ.1} 17 (2+e—:m-‘1!|+ﬁlm_\.-":ij)

4 1 1 1
—= COS —+ = cos
7 (2+sin|ﬁi|+ein{v-":_n]} 17T (‘2+e—:in{1!|+ﬁin(ﬁi})

1 1 ) 1
0s = Ccos
(2+sin|ﬁz|+ﬁin{v’5¢]} 17 (2+ﬁim;-|.¢]+sm|\.»"ﬁu)
-

5 L COs L
24 sin( 2] sin( 3t 17 2 4sin(4t)+sin| 5t

Y
el~fe
el

a4 1 1 1 1 4
A (2 + sin(v/2¢) +sinw’ic;) (1) R A (2 + sin(4r) + sin{ﬁt)) (1)

ra 1 1 1 4
- [1_ cos (2 S sin(v2E) + sin{ﬁt}) AT A (2 F sin(4f) + sin(+/5f) )] (1)
= g Vo

4 1 1 1
rith = — cos + ——cos d
AR gy = g ees (2 ¥ sin(+/2t) + sin{fﬁt}) 17 “° (2 T sin(At) + sin(v5t) )

-1 —1 T 1 -1 -1 T C(E(2+=—:in{v""2!]]+ﬁin[-\-'"§i})
o= (1) () (1)) (D)

y 1
COS
( 24-sin(4t) 4sin(/5E) )

. 1
1 _ 1 oS (2+:-:'u-|.:v’51 )+sin| »..-’:?::.)
— ( EN Z

: : COS L
=\ Z4sin(4t)4sin(+5E)

[

1 . 1 1 . 1
= COs — 5 COs
2 (2+=—:i.:|'|{v""zt.]+ﬁh|.[~.-"’§t}) 2 (2+ﬁin|:-1t.}+si.nlv"ﬁll)

1 . 1 1 1
— = COS = cos
\ "2 (‘2+:—:in{v""zt]+siﬂ|s.-"’§f}) + 2 (2+sin[-]f}+:—:in{v"ﬁ!|}

1 . 1 1 1
= CO8 = C0OSs
2 (‘2+:—:in{ﬂt]+siﬂ[ﬁf}) 2 (‘2+sin|1!|+siu[\@t})
—1cos ! —1 cos L
2 24sin(+2t) +sin(+/3t) Z 77 | 24sinfat)+sin(+5t)

1 1 1y 1 1 1
3 (2 + sin(v/2¢) +sin{u"§t]) (—1) Sl (:2 T+ sin(4f) + sinf_.,fﬁf}) (—1)

[ o ‘ g eos 1 1
B [2 oo (2 + sin(+/2t) + sin{v"it]) g =" (2 + sin(4t) + sin(+/5t) )] (—1)
Pr,g = g=(t)V1

. 1 1 1 1
with g2(f) = 5 cos (2 T sin(V21) + sin{ﬁzj) g “" (2 1 sin(4f) + sinwﬁt)) '
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cos [ ——=L+—+—
v ()Y oy (1) T\ 24sin(W2t) +sin(31)
) ( L ) _( v ) = can be written in

va(t) va(f)

Now, the system (

bl b2
=] C )

cos (2+5i11-: V2t ) +sin (/3 :-)
the following form:

M=)+ v ()= gi(t),
va(t) = galt).

We have

ba| e

. 1 1 1
vy (t) + v (t) = — [dcos — — + cos s
r t 17 [ (Q + sin(v2t) + sin( \-"St]) (12 + sin{df) + 9{11[\/3{'! )]

1 1 1
n(t) = = |cos — — COS .
valt) =5 {( . (2 + sin(v/2t) + sinl_'\-".'.’.t;l) o (:2 + sin(dt) + :-;iu.[\/ﬁf)n

Applying Theorem 3.2.2, the unique almost automorphic solution of the above system is given
by

t
v (t) = e~ Mit—c) v1{a) -I—_-U'[ f.=_"'m_":'gl(.-',']d.‘;
o

3y 2 0t 1 1
= e 5y () + —_f e—F(t—2) [:L(:c}:-s ( - - — ) + cos ( - - )] ds
85 2 + sin(v/2s) 4 sin(+/3s) 2 4+ sin(4s) + sin(v/5s)

and
va(t) ! [(0 ( ! ) o ( ! )]
I =— |cos — cos .
2T 2 + sin(/2t) + sin(+/3t) 2 + sin(4t) + sin{y/5t)

Since Fu(t) = v(t) and F-1= (_11 {1)) we have

gy e (-1 1Y (u(t)
u(t) =F " u(t) = ult) = ( | {)) (1_‘2{”) .

Since F—! is a continuous transformation and v(t) is an almost automorphic function, the
unique solution of l u(t) = F~'v(t) is almost automorphic. Hence, u(t) is given by

o va(t) — vy (t)
u{t) = . far .
) vrlt)

In this paper, we studied and found the existence and uniqueness of almost automorphic
solutions to some singular systems differential equations with constant coefficients. The
system we have studied is a nonhomogeneous system with almost automorphic forcing term.

4, Conclusion

So, there are still some problems that are not solved yet. As future work, we suggest the
following:

L. The study of nonautonomous cases, that is,
E@®)u(t) + F(Hu(t) = g(t),teRrR

where E(t), F (t) € M (m, C) and f € AA(C™M) and
AU ) + B! + COu) = @), t e R

where A(t), B(t), C(t) € M (m, C) and f € AA(C™).

2. The study of higher-order case, that is

AnXM™() + Anax™ Y+ L+ AX(D) + Aox(t) = F(t),tER,
where Ai € M (n, C) and m > 3.
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