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1. INTRODUCTION 

In this note, we are concerned with the initial boundary value problem of the following types: 

| | , 0 ( , ) (0, ),p

ttu u u x t T     ，                                                   (1.1) 

( , ) 0 , (0, ),u x t x t T  ，                                                                  (1.2) 

0 1( ,0) ( ), ( ,0) ( )tu x u x u x u x x  ， ；                                                       (1.3) 

| | | | 0, ( , ) (0, ),q p

ttu u u u x t T      ，                                           (1.4) 

( , ) 0 , (0, ),u x t x t T  ，                                                                  
(1.5) 

0 1( ,0) ( ), ( ,0) ( )tu x u x u x u x x  ，                                                        (1.6) 

and 

| | 0, ( , ) (0, ),p

tt tu u u u x t T      ，                                             (1.7) 

( , ) 0 , (0, ),u x t x t T  ，                                                                  (1.8) 

0 1( ,0) ( ), ( ,0) ( )tu x u x u x u x x  ， ，                                                       (1.9) 

where   is a bounded domain in 
nR  with sufficiently smooth boundary  and , 0p q  . Our main 
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goal is to find sufficient conditions forblow up of solutions to problem (1.1)-(1.3), problem (1.4}-(1.6) 

and problem (1.7)-(1.9). 

The following nonlinear wave equation 

( , , )tt tu u f u u u                                                                           (1.10) 

attracted attention of the researchers for many years. The case when  

( , , ) | | | |m p

t t tf u u u a u u b u u     (or ( ) | |pf u b u , here 0, 0a b  ), e.g. 

| | | |m p

tt t tu u a u u b u u                                                                  (1.11) 

has been extensively studied over the past decades. It is well known that the nonlinear term | |pu u  

drives the solution of (1.11) to blow up in finite time. Various sufficient conditions for blowup have 

been provided and qualitative properties have also been investigated (see for example [1, 2, 3, 4, 5, 6, 7, 

8, 9, 10], to cite just a few). By contrast, there has been a relatively small number of studies of blowup 

for nonlinearities with a dependence on spatial derivatives of u . Ebihara [11, 12, 13] established global 

existence of classical solutions and asymptotic behavior of solutions of equation (1.10). When 

, , ) ( ) ( , )( t tf u u u a x u u    in (1.10), Slemrod [14], Vancostenoble [15] and Haraux [16] proved 

the weak asymptotic stabilization of solutions. Quite recently, Nakao [17, 18, 19, 20, 21] considered the 

nonlinear wave equations of the form 

( , ) ( , , ),tt t tu u x u f u u u                                                                (1.12) 

and he proved the global existence and decay of solutions. There seems to be little investigations 

concerning the blow-up of solutions for equation (1.10) when the nonlinear perturbation term f  

depends on the derivatives of u . This is because in the case it seems difficult to handle the term | |pu . 

Sideris [22] has shown blow-up of small data solutions in finite time for the Cauchy problem of 

equation (1.10) with 
2 2 2 2( , , ) | | | |tf u u u a u b u      in three dimensions.  As far as we are 

aware, this is the first blow-up result for equation (1.10) when the nonlinear perturbation term f  

depends on only the derivatives of u . Then the result was extended by Schaeffer [23]and Rammaha [24, 

25].However, very little is known in the literature concerning the blow-up of solutions for initial 

boundary problem of equation (1.10) when the nonlinear perturbation term f  depends on only the 

derivatives of u  and such a method in [22, 23, 24, 25] cannot be used in this case. 

The object of this paper is to show the sufficient conditions for blow-up of solutions for the initial 

boundary value problem of equation (1.10) with ( , , ) | |p

tf u u u u   or
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( , , ) | | | |p q

tf u u u u u    . The eigen function method developed in [1] was used here.  We also 

extend Lemma 1.1 in [1] and then get the sufficient conditions for blow-up of solutions to the initial 

boundary value problem (1.7)-(1.9). This method applies also to the case of the equation (1.10) with 

Neumann boundary condition. 

2. MAIN RESULTS 

Throughout this paper we assume all function spaces are considered over real field and their notations 

and definitions are same as [26]. For simplicity, we take 1  . By the usual Galerk in method and 

similar to the proof in [11], we can obtain regular solution in the local sense. Now we mention some  

Lemmas which play an essential role in this paper. 

Lemma  1 [1] Let 
2( )t C   satisfy 

( ), 0tt h t    

with (0) 0, (0) 0t       . Suppose that ( ) 0h s   for all s  . Then, ( ) 0t t  where 

( )t t exists and the following inequality holds 

( )
2 1/2[ 2 ( ) ]

t s

t h v dv ds



     . 

We consider the following spectral problem 

0w w in    ,                                                                         (2.1) 

0, .w on  ,                                                                             (2.2) 

It is well known that problem (2.1)-(2.2) has the smallest eigen value 1 0   with the corresponding 

normalized eigen function 1 0w   in  , 1( ) 1w x dx


 . Then we denote 
11

1
0 1/( 1)

1

| |
( )

p
pp
p

p

w
k dx

w






  .                                                                       (2.3) 

Theorem 2 Suppose 1p  . Let ( , )u x t be a regular solution of problem (1.1)-(1.3). Suppose that the 

following conditions are satisfied: 

0 1 1 1( ) ( ) , ( ) ( ) ,u x w x dx u x x dx  
 

    

where 

/( 1)

0

1

0, 0
p pk

 




   . Then, the solution of problem (1.1)-(1.3) blows up in a finite time. 

Proof  Let 

1( ) ( , ) ( )U t u x t w x dx


  . 

Then (0) 0, (0) 0tU U      and as it follows from (1.1)-(1.3), ( )U t satisfies 

1 1| | .p

ttU U u w dx


                                                                        (2.4) 

By (2.1) and Holder inequality, we get 

1 1 1 1| ( , ) ( ) | | ( , ) ( ) |U u x t w x dx u x t w x dx 
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1/ 1
1 1 1 1/

1

| |
| | | || | (| | )p

p

w
u w dx u w dx u w dx

w  


           

1 1 11

1
1 0 11/( 1)

1

| |
( ) ( | | ) ( | | ) ,

p
pp

p pp p p

p

w
dx u w dx k u w dx

w



  


       

that is to say 

1
1

0

| | ( ) .p p pu w dx U
k



                                                                        (2.5) 

Therefore, from (2.4) and inequality (2.5), we obtain the ordinary differential inequality 

1
1

0

( ) ,p p

ttU U U
k


                                                                            (2.6) 

with (0) 0, (0) 0tU U     . Denote 1
1

0

( ) ( ) p ph s s s
k


  ,since ( ) 0h s  for s  , it 

follows from Lemma 1 that 

( )
2 2 1 1 1/21

1

0

2
[ ( ) ( )]

2

U t
p p pt s s ds

p k


       

 , 

and ( )U t develops a singularity in finite time 0t T , where 

2 2 1 1 1/21
1

0

2
[ ( ) ( )]

2

p p pT s s ds
p k


  


     

 . 

Finally, since ( ) 0U t  , we have 1( ) | ( ) | | ( , ) | | ( , ) |U t U t sup u x t w dx sup u x t 


   ,which 

proves the theorem. 

Theorem 3 Suppose 2,0 2p q   . Let ( , )u x t  be a regular solution of problem (1.4)-(1.6). 

Suppose that the following conditions are satisfied: 

0 1 1 1 1 1( ) ( ) , ( ) ( )u x w x dx u x x dx  
 

   , 

where 1  is the positive root of the equation 1
1 1

0

( ) ( ) 0p p qh s s s s
k


     and 1 0  . Then, the 

solution of problem (1.4)-(1.6) blows up in a finite time. 

Proof  Let 

1( ) ( , ) ( )U t u x t w x dx


  . 

Then 1 1(0) 0, (0) 0tU U     and as it follows from (1.4)-(1.6), ( , )u x t  satisfies 

1 1 1| | | |q p

ttU U u w dx u w dx
 

     .                                                       (2.7) 

Then (2.5) and the inequality 1| |q qu w dx U


  yield the ordinary differential inequality 

1
1 1

0

( ) ( )p p q

ttU U U U h U
k


    ,                                                           (2.8) 

with 1 1(0) 0, (0) 0tU U     .  Since 1( ) 0h s  for 1s  . The rest of the proof is similar to 

the proof of Theorem 2 and the proof is complete. 

Now we extend  Lemma  1 (see  Lemma 1.1 in [1] and [3]) to the following  Theorem . 

Lemma 4 Let 
2( )t C   satisfy 

1 ( ), 0tt tk h t     ,                                                                       (2.9) 
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with (0) 0, (0) 0t       , where 1 0k  . Suppose that ( ) 0h s  for all s  . If 
1

2 2
0 1 [ 2 ( ) ] 1

s

k h d ds
 

   
 

    , 

then ( ) 0t t   where ( )t t exists and lim ( )
t T

t


   where 
*

0

1

1
(1 )T T ln

k
    . 

Proof Because (0) 0, (0) 0t       , then there exist an interval 0[0, )T such that ( ) 0t t  and 

( ) 0t    for 0[0, )t T . If it is false, let 

1 2inf{ : ( ) }, inf{ : ( ) 0}tt t t t t t      . 

If 2 1t t , taking into account the condition (2.9) and the fact that ( ) 0h s   for all s  , we have 

1 1 1

1( ) ( ) ( ) 0k t k t k t

t tt t

d
e e k e h

dt
       . 

Thus 1 2

2( ) (0) 0
k t

t tt e 
  , which contradicts 2( ) 0t t  , and so we have 2 1t t . Furthermore, we 

have ( ) 0t t   for 1[0, )t t .In this case, we get that 
1

1
0

( ) (0) ( ) (0) 0
t

tt s ds         , this 

is a contradiction of the fact 1( )t  .  Thus, there exist an interval 0[0, )T  such that ( ) 0t t  and 

( )t   for 0[0, )T .  

A multiplication of (2.9) by 122 ( )k t

te t  gives 

1 1 12 2 22

12 2 ( ) 2 ( )
k t k t k t

t tt t te k e e h     , 

that is, 

1 12 22[ ( ) ] 2 ( ) 2 ( ) 2 ( )k t k t

t t t

d d
e e h h h s ds

dt dt




        .                                     （2.10） 

Integrating（2.10）from 0 to t  yields 

12 2 2( ) ( (0)) 2 ( )k t

t te h s ds



    , 

since 0t  , hence 

1

1

2 2( 2 ( ) )
k t

t e h s ds



 




   .                                                                 (2.11) 

For (2.11), we may separate variables and integrate over (0, )t  to obtain 

1

1

2 2
1 01 ( 2 ( ) )

y
k t

e k h s ds dy
 

 
 


     . 

Therefore, we get the result. 

Theorem 5 Suppose 1p  . Let ( , )u x t  be a regular solution of problem (1.7)-(1.9). Suppose that the 

following conditions are satisfied: 

0 1 2 1 1 2( ) ( ) , ( ) ( )u x w x dx u x x dx  
 

   , 

where 2  is the positive root of the equation 1
2 1

0

( ) ( ) 0p ph s s s
k


   and 2 0  . If 

2 2

1

2 2
1 1 2 2[ 2 ( ) ] 1

s

k h d ds
 

   
 

    , then the solution of problem (1.7)-（1.9）blows up in a finite 

time. 

Proof Similar to the proof of Theorem 2, we can obtain the ordinary differential inequality 

1
1

0

( ) 0p p

tt tU U U U
k


    ,                                                                （2.12） 

with 2 2(0) 0, (0) 0tU U     .Denote 1
2 1

0

( ) ( ) pph s s s
k


  , since 2 ( ) 0h s  for 2s  , it 
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follows from  Theorem  
0

lim ( )
t T

U t


  , for some  
*

0 1

1
(1 )T T ln

c
    . Furthermore, since 

( ) 0U t  , we have 

1( ) | ( ) | | ( , ) | | ( , ) |U t U t sup u x t w dx sup u x t 


   , 

and we get 

0

lim || || , 1p

p
t T

u p


      , 

for some  
*

0 1

1
(1 )T T ln

c
    , which proves the theorem. 

Remark 1 The same results hold for the equation (1.10) with the boundary condition 0
u

a bu
n


 


. 

Remark 2 It seems that the method can also be applied to the equation (1.10) when u  is replaced by 

p Laplace  operator (| | )pdiv u u   and it seems that the method can be applied to equation (1.10) 

with ( , , ) | |p

t tf u u u u u    .  
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