An Inequality for Closed Manifolds with Timelike Immersion and Negative Gauss Curvature

Serpil Karagoz
Faculty of Art and Sciences, Mathematics Department, Abant Izzet Baysal University, Bolu, Turkey.

*Corresponding Author: Serpil Karagoz, Faculty of Art and Sciences, Mathematics Department, Abant Izzet Baysal University, Bolu, Turkey.

Abstract

In this paper an inequality for closed manifolds with timelike immersion and negative Gauss curvature is derived. It is computed by means of the mean curvature H and Gauss curvature G of timelike immersed manifold.

$$
\bullet \int_{V} H^{2} d V \geq \int_{V} \sqrt{\left|-3 G^{2}-2\right|} d V
$$

Keywords: Total Absolute Curvatue, Lorentz Space, Timelike Immersion, Mean Curvature, Gauss Curvature

1. Introduction

Let M^{2} be an oriented closed surface with a timelike immersion : $M^{2} \rightarrow L^{4}$. Let $F\left(M^{2}\right)$ and $F\left(L^{4}\right)$ be the bundles of orthonormal frames M^{2} and L^{4} respectively. Let B be the set of elements $b=\left(p, l_{1}, l_{2}, l_{3}, l_{4}\right)$ such that $\left(p, l_{1}, l_{2}\right) \in F\left(M^{2}\right)$ and $b=\left(x(p), l_{1}, l_{2}, l_{3}, l_{4}\right) \in F\left(L^{4}\right)$ whose orientation is coherent with the one of L^{4}, identifying l_{i} with $d x\left(l_{i}\right), i=1,2$ where l_{i} are unit vectors and l_{2} is a timelike vector.
Define $\tilde{x}: B \rightarrow F\left(L^{4}\right)$ naturally by $b \rightarrow\left(x(p), l_{1}, l_{2}, l_{3}, l_{4}\right)$. The structure equations of L^{4} are given by

$$
\begin{gathered}
d x=\sum \widetilde{w}_{A} l_{A} \quad d l_{A}=\sum \widetilde{w}_{A B} l_{B} \quad \widetilde{w}_{A B}+\widetilde{w}_{B A}=0 \\
d \widetilde{w}_{A}=\sum \widetilde{w}_{B} \Lambda \widetilde{w}_{B A} \\
d \widetilde{w}_{A B}=\sum \widetilde{w}_{A C} \Lambda \widetilde{w}_{C B} \quad A, B, C=1,2,3,4
\end{gathered}
$$

where $\widetilde{w}_{A}, \widetilde{w}_{A B}$ are differential 1- forms on $F\left(L^{4}\right)$.
Let $w_{A}, w_{A B}$ be induced 1-forms on B from $\widetilde{w}_{A}, \widetilde{w}_{A B}$ by the mapping \widetilde{x}. Then we have

$$
\begin{gathered}
w_{3}=w_{4}=0 \\
w_{i 3}=A_{3 i 1} w_{1}+A_{3 i 2} w_{2} \\
w_{i 4}=A_{4 j 1} w_{1}+A_{4 j 2} w_{2} ; i, j=1,2
\end{gathered}
$$

Let $\left(p, l_{1}, l_{2}, \tilde{l}_{3}, \tilde{l}_{4}\right)$ be a local cross-section of $B \rightarrow F\left(M^{2}\right)$. The restriction of $A_{r i j}$ onto the image of local cross-section is denoted by $\bar{A}_{r i j}$ where $=3,4$.
We can compute second fundamental form as

$$
I I(d p, d p)=\langle S(d p), d p\rangle
$$

where S is the shape operator of the immersion

$$
\begin{array}{r}
\left.I I(d p, d p)=w_{1}^{2}<S\left(l_{1}\right), l_{1}\right\rangle+2 w_{1} w_{2}\left\langle S\left(l_{1}\right), l_{2}\right\rangle+w_{2}^{2}\left\langle S\left(l_{2}\right), l_{2}\right\rangle \\
S\left(l_{1}\right)=D_{11} l_{4}=A_{411} l_{1}-A_{421} l_{2} \\
S\left(l_{2}\right)=D_{12} l_{4}=A_{412} l_{1}-A_{422} l_{2}
\end{array}
$$

$$
\begin{gathered}
S=\left(\begin{array}{ll}
A_{411} & -A_{421} \\
A_{412} & -A_{422}
\end{array}\right) \\
I I(d p, d p)=A_{411} w_{1}^{2}+2 A_{412} w_{1} w_{2}+A_{422} w_{2}^{2}
\end{gathered}
$$

is the second fundamental form.
Theorem 1: Let M^{2} be a 2-dimensional oriented closed manifold with a timelike immersion : $M^{2} \rightarrow$ L^{4}. If ($A_{4 i j}$) is the shape operator of the timelike immersion then Lipschitz- Killing curvature $K(p, l)$ is given by

$$
K(p, l)=-\lambda_{1}(p) \cos ^{2} \theta-\lambda_{2}(p) \sin ^{2} \theta
$$

where l is the unit normal vector and

$$
\begin{aligned}
& \lambda_{1}(p)=\operatorname{det}\left(\bar{A}_{3 i j}\right) \\
& \lambda_{2}(p)=\operatorname{det}\left(\bar{A}_{4 i j}\right)
\end{aligned}
$$

Proof: Choose l as

$$
\begin{gathered}
l=l_{4}=\cos \theta \tilde{l}_{3}+\sin \theta \tilde{l}_{4} \\
A_{4 i j}=\cos \theta \bar{A}_{3 i j}+\sin \theta \bar{A}_{4 i j} ; i, j=1,2
\end{gathered}
$$

The Lipschitz- Killing curvature $K(p, l)$ is determined by
$K(p, l) \equiv \operatorname{det} A_{4 i j}=\operatorname{det}\left(\begin{array}{ll}\cos \theta \bar{A}_{311}+\sin \theta \bar{A}_{411} & -\cos \theta \bar{A}_{312}-\sin \theta \bar{A}_{412} \\ \cos \theta \bar{A}_{312}+\sin \theta \bar{A}_{412} & -\cos \theta \bar{A}_{322}-\sin \theta \bar{A}_{422}\end{array}\right)$
The determinant is a quadratic form of $\cos \theta$ and $\sin \theta$. It will be derived as

$$
K(p, l)=-\lambda_{1}(p) \cos ^{2} \theta-\lambda_{2}(p) \sin ^{2} \theta
$$

By using an orthonormal frame where

$$
\lambda_{1}(p)=\operatorname{det}\left(\bar{A}_{3 i j}\right)
$$

and

$$
\lambda_{2}(p)=\operatorname{det}\left(\bar{A}_{4 i j}\right)
$$

$\lambda_{1}(p), \lambda_{2}(p)$ are continuous on M^{2}. The Gauss curvature $G(p)$ is given by

$$
G(p)=\lambda_{1}(p)+\lambda_{2}(p)
$$

as in [1].
Theorem 2: Let M^{2} be a 2-dimensional oriented closed manifold with a timelike immersion : $M^{2} \rightarrow$ L^{4}. If $G(p)=\lambda_{1}(p)+\lambda_{2}(p)$ is negative Gauss curvature of M^{2} then the total absolute curvature $K^{*}(p)$ at point p is

$$
K^{*}(p)=-\pi G(p)
$$

on V and

$$
K^{*}(p)=(2 \alpha-\pi) G(p)+4 \sqrt{-\lambda_{1} \lambda_{2}}
$$

on U where

$$
\begin{aligned}
& U=\left\{p \in M^{2}, \lambda_{1}(p)>0\right\} \\
& V=\left\{p \in M^{2}, \lambda_{1}(p) \leq 0\right\}
\end{aligned}
$$

Proof: Since λ_{1} and λ_{2} are both negative on V we have $K^{*}(p)=\int_{0}^{2 \pi}|K(p, l)| d \theta \quad$ where $K(p, l)$ is the Lipschitz- Killing curvature

$$
\begin{aligned}
K^{*}(p) & =\int_{0}^{2 \pi}|K(p, l)| d \theta \\
& =\int_{0}^{2 \pi}\left|-\lambda_{1}(p) \cos ^{2} \theta-\lambda_{2}(p) \sin ^{2} \theta\right| d \theta \\
& =\int_{0}^{2 \pi}|-1|\left|\lambda_{1}(p) \cos ^{2} \theta+\lambda_{2}(p) \sin ^{2} \theta\right| d \theta \\
& =\int_{0}^{2 \pi}-\left(\lambda_{1}(p) \cos ^{2} \theta+\lambda_{2}(p) \sin ^{2} \theta\right) d \theta \\
& =-\pi\left(\lambda_{1}(p)+\lambda_{2}(p)\right) \\
& =-\pi G(p)
\end{aligned}
$$

Since λ_{1} is positive on U and $G(p) \leq 0$ we have a negative λ_{2} such that $\left|\lambda_{2}\right| \geq\left|\lambda_{1}\right|$.
Total absolute curvature on U is

$$
\begin{aligned}
K^{*}(p) & =\int_{0}^{2 \pi}|K(p, l)| d \theta \\
& =\int_{0}^{2 \pi}\left|-\lambda_{1}(p) \cos ^{2} \theta-\lambda_{2}(p) \sin ^{2} \theta\right| d \theta \\
& =\int_{0}^{2 \pi}|-1|\left|\lambda_{1}(p) \cos ^{2} \theta+\lambda_{2}(p) \sin ^{2} \theta\right| d \theta \\
& =\frac{\mathbf{1}}{2} \int_{0}^{2 \pi}\left|\left(\lambda_{1}+\lambda_{2}\right)+\left(\lambda_{1}-\lambda_{2}\right) \cos 2 \theta\right| d \theta \\
& =\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right) \int_{0}^{2 \pi}\left|\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}+\cos 2 \theta\right| d \theta
\end{aligned}
$$

Define an angle α such that

$$
\begin{aligned}
\cos \alpha & =-\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}} ; \quad 0<\alpha \leq \frac{\pi}{2} \quad \text { so } \quad \sin \alpha=\frac{2 \sqrt{-\lambda_{1} \lambda_{2}}}{\lambda_{1}-\lambda_{2}} \\
K^{*}(p) & =\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right) \int_{0}^{2 \pi}|\cos 2 \theta-\cos \alpha| d \theta \\
& =\frac{1}{4}\left(\lambda_{1}-\lambda_{2}\right) \int_{0}^{4 \pi}|\cos t-\cos \alpha| d t \\
& =(2 \alpha-\pi) G(p)+4 \sqrt{-\lambda_{1} \lambda_{2}}
\end{aligned}
$$

Theorem 3: Let M^{2} be a 2-dimensional oriented closed manifold with a timelike immersion : $M^{2} \rightarrow$ L^{4}. If $G(p)=\lambda_{1}(p)+\lambda_{2}(p)$ is negative Gauss curvature of M^{2} then for the mean curvature H of M^{2} in L^{4} we have

$$
\int_{V} H^{2} d V \geq \int_{V} \sqrt{\left|-3 G^{2}-2\right|}
$$

Proof: Let for the frame $\left(p, l_{1}, l_{2}, l_{3}, l_{4}\right) ; l_{1}$ and l_{2} be the principal directions with respect to l_{4}.
Choose $\bar{A}_{r i j}$ as follows

$$
\begin{aligned}
& \bar{A}_{311}=a ; \bar{A}_{312}=\bar{A}_{321}-c ; \bar{A}_{322}=-b \\
& \bar{A}_{411}=d ; \bar{A}_{422}=-e ; \bar{A}_{412}=\bar{A}_{421}=0
\end{aligned}
$$

where a,b,c,d,e are all positive. $\bar{A}_{3 i j}=\left(\begin{array}{cc}a & -c \\ -c & -b\end{array}\right)$ and $\bar{A}_{4 i j}=\left(\begin{array}{cc}d & 0 \\ 0 & -e\end{array}\right)$ then

$$
\begin{gathered}
\lambda_{1}(p)=\operatorname{det}\left(\bar{A}_{3 i j}\right)=-a b-c^{2} \\
\lambda_{2}(p)=\operatorname{det}\left(\bar{A}_{4 i j}\right)=-d e
\end{gathered}
$$

where $\lambda_{2} \leq \lambda_{1} \leq 0$.

Shape operator is given by $S=\left(\begin{array}{cccc}a & -c & 0 & 0 \\ -c & -b & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 0 & -e\end{array}\right)$. Mean curvature is then

$$
\begin{gathered}
H=\frac{a-b+d-e}{2} \\
H^{2}=\frac{(a-b+d-e)^{2}}{4} \\
4 H^{2}=(a-b)^{2}+(d-c)^{2}+2(a-b)(d-e) \\
=(a-b)^{2}+(d-c)^{2}+2(a d-a e-b d+b e)
\end{gathered}
$$

Since

We have

$$
\begin{gathered}
\bar{A}_{311} \bar{A}_{411}+\bar{A}_{322} \bar{A}_{422}=\bar{A}_{311} \bar{A}_{422}+\bar{A}_{322} \bar{A}_{411}=\bar{A}_{312} \bar{A}_{412}+\bar{A}_{421} \bar{A}_{312} \\
a d-a e-b d+b e=0
\end{gathered}
$$

$$
\begin{gathered}
4 H^{2}=(a-b)^{2}+(d-e)^{2} \\
4 H^{2} \geq 4|a b|+4|d e| \\
4 H^{2} \geq 8 \sqrt{|a b d e|} \\
\lambda_{1} \lambda_{2}=\left(-a b-c^{2}\right)(-d e) \\
=a b d e+d e c^{2} \\
a b d e=\lambda_{1} \lambda_{2}-d e c^{2} \\
a b d e=\lambda_{1} \lambda_{2}+\lambda_{2} c^{2}
\end{gathered}
$$

Let $c=1$ we have $a b d e=\lambda_{1} \lambda_{2}+\lambda_{2}$

$$
\begin{gathered}
4 H^{2} \geq 8 \sqrt{\left|\lambda_{1} \lambda_{2}+\lambda_{2}\right|} \\
H^{2} \geq 2 \sqrt{\left|\lambda_{1} \lambda_{2}+\lambda_{2}\right|} \\
H^{4} \geq 4\left|\lambda_{1} \lambda_{2}+\lambda_{2}\right|
\end{gathered}
$$

For $V=\left\{p \in M^{2}, \lambda_{1}(p) \leq 0\right\}$ we get

$$
\int_{V} H^{4} d V \geq \int_{V} 4\left|\lambda_{1} \lambda_{2}+\lambda_{2}\right| d V
$$

If we substitute $G(p)=\lambda_{1}(p)+\lambda_{2}(p)$ in $\left|\lambda_{1}(p) \lambda_{2}(p)+\lambda_{2}(p)\right|=\left|\lambda_{2}(p) \lambda_{1}(p)+1\right|$ then we get

$$
\begin{aligned}
\left|\lambda_{1}(p) \lambda_{2}(p)+\lambda_{2}(p)\right| & =\left|\lambda_{2}(p)\left[\left(G(p)-\lambda_{2}(p)\right)+1\right]\right| \\
& =\left|\lambda_{2}(p) G(p)-\lambda_{2}^{2}(p)+\lambda_{2}(p)\right|
\end{aligned}
$$

and since $\quad \int_{V}-\lambda_{2} d V \geq-\frac{1}{2} \int_{V} G d V \quad$ in [1]

$$
\begin{gathered}
\int_{V} H^{4} d V \geq \int_{V} 4\left|\lambda_{2} G-\lambda_{2}^{2}+\lambda_{2}\right| d V \\
\geq \int_{V} 4\left|\lambda_{2}(G+1)-\lambda_{2}^{2}\right| d V
\end{gathered}
$$

since $\lambda_{2}(p)(G(p)+1)-\lambda_{2}^{2}(p) \leq 0$ on V
We get the inequality

$$
\int_{V} H^{4} d V \geq \int_{V}\left(-4 \lambda_{2}(G+1)-\lambda_{2}^{2}\right) d V
$$

Since $-\frac{1}{2} G \leq-\lambda_{2}$

$$
\begin{gathered}
\int_{V} H^{4} d V \geq \int_{V}\left[-\frac{1}{2} G(G+1)-\left(-\frac{1}{2} G\right)^{2}\right] d V=\int_{V}\left(-3 G^{2}-2\right) d V \\
H^{4} \geq-3 G^{2}-2 \Rightarrow H^{2} \geq \sqrt{\left|-3 G^{2}-2\right|}
\end{gathered}
$$

Finally we get the inequality

$$
\int_{V} H^{2} d V \geq \int_{V} \sqrt{\left|-3 G^{2}-2\right|} d V
$$

REFERENCES

[1] Bang-Yen Chen, On an inequality of T.J.Willmore, Proceedings of the American Mathematical Society, 1970
[2] B.O’Neill, Semi-Riemannian Geometry, Academic Press, NewYork, 1983

Citation: S. Karagoz, " An Inequality for Closed Manifolds with Timelike Immersion and Negative Gauss Curvature ", International Journal of Scientific and Innovative Mathematical Research, vol. 6, no. 5, p. 1418, 2018., http://dx.doi.org/10.20431/2347-3142.0605002

Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

