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1. INTRODUCTION 

Let 𝑀2 be an oriented closed surface with a timelike immersion : 𝑀2 → 𝐿4 . Let 𝐹(𝑀2) and 𝐹(𝐿4) be 

the bundles of orthonormal frames 𝑀2and  𝐿4 respectively. Let B be the set of elements  
𝑏= (𝑝, 𝑙1 , 𝑙2 , 𝑙3 , 𝑙4) such that  (𝑝, 𝑙1 , 𝑙2) ∈ 𝐹(𝑀2) and 𝑏 = (𝑥(𝑝), 𝑙1 , 𝑙2 , 𝑙3 , 𝑙4) ∈ 𝐹(𝐿4) whose 

orientation is coherent with the one of  𝐿4, identifying 𝑙𝑖  with 𝑑𝑥 𝑙𝑖 , 𝑖 = 1,2  where 𝑙𝑖  are unit 

vectors and 𝑙2 is a timelike vector. 

Define 𝑥  : 𝐵 → 𝐹(𝐿4)  naturally by 𝑏 → (𝑥(𝑝), 𝑙1 , 𝑙2 , 𝑙3 , 𝑙4). The structure equations of 𝐿4are given by 

𝑑𝑥 =  𝑤 𝐴𝑙𝐴        𝑑𝑙𝐴 =  𝑤 𝐴𝐵 𝑙𝐵             𝑤 𝐴𝐵 + 𝑤 𝐵𝐴 = 0 

𝑑𝑤 𝐴 =  𝑤 𝐵𝛬 𝑤 𝐵𝐴      𝑑𝑤 𝐴𝐵 =  𝑤 𝐴𝐶 𝛬𝑤 𝐶𝐵    𝐴, 𝐵, 𝐶 = 1,2,3,4  

where 𝑤 𝐴  , 𝑤 𝐴𝐵  are differential 1- forms on 𝐹(𝐿4). 

Let 𝑤𝐴 ,𝑤𝐴𝐵  be induced 1- forms on B from  𝑤 𝐴  , 𝑤 𝐴𝐵  by the mapping  𝑥  . Then we have  

𝑤3 = 𝑤4 = 0 

𝑤𝑖3 = 𝐴3𝑖1𝑤1 + 𝐴3𝑖2𝑤2 

𝑤𝑖4 = 𝐴4𝑗1𝑤1 + 𝐴4𝑗2𝑤2    ;    𝑖, 𝑗 = 1,2 

Let  (𝑝, 𝑙1 , 𝑙2 , 𝑙 3 , 𝑙 4) be a local cross-section of  𝐵 → 𝐹(𝑀2). The restriction of 𝐴𝑟𝑖𝑗  onto the image of 

local cross-section is denoted by 𝐴 
𝑟𝑖𝑗   where = 3, 4 . 

We can compute second fundamental form as  

II(dp,dp) =< S(dp),dp > 

where S  is the shape operator of the immersion  

   𝐼𝐼 𝑑𝑝, 𝑑𝑝 = 𝑤1
2 < 𝑆 𝑙1 , 𝑙1 > +2𝑤1𝑤2 < 𝑆 𝑙1 , 𝑙2 > +𝑤2

2 < 𝑆 𝑙2 , 𝑙2 > 

 
𝑆 𝑙1 = 𝐷11𝑙4 = 𝐴411 𝑙1 − 𝐴421 𝑙2 

𝑆 𝑙2 = 𝐷12𝑙4 = 𝐴412 𝑙1 − 𝐴422 𝑙2 

Abstract: In this paper an inequality for closed manifolds with timelike immersion and negative Gauss 

curvature is derived. It is computed by means of the mean curvature H and Gauss curvature G of timelike 

immersed manifold.  
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𝑆 =  
𝐴411 −𝐴421

𝐴412 −𝐴422
  

𝐼𝐼 𝑑𝑝, 𝑑𝑝 = 𝐴411𝑤1
2 + 2𝐴412𝑤1𝑤2 + 𝐴422𝑤2

2 

is the second fundamental form.  

Theorem 1: Let 𝑀2 be a 2-dimensional oriented closed manifold with a timelike immersion : 𝑀2 →
𝐿4 . If (𝐴4𝑖𝑗 )  is the shape operator of the timelike immersion then Lipschitz- Killing curvature 

 𝐾(𝑝, 𝑙) is given by  

𝐾 𝑝, 𝑙 = −𝜆1 𝑝 𝑐𝑜𝑠2𝜃 − 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 

where  𝑙 is the unit normal vector and 

𝜆1 𝑝 = det(𝐴 
3𝑖𝑗 ) 

𝜆2 𝑝 = det(𝐴 
4𝑖𝑗 ) 

Proof:   Choose 𝑙 as  

𝑙 = 𝑙4 = cos 𝜃 𝑙 3 + 𝑠𝑖𝑛𝜃𝑙 4 

𝐴4𝑖𝑗 = 𝑐𝑜𝑠𝜃𝐴 
3𝑖𝑗 + 𝑠𝑖𝑛𝜃𝐴 

4𝑖𝑗  ; 𝑖, 𝑗 = 1,2 

The Lipschitz- Killing curvature  𝐾 𝑝, 𝑙  is determined by  

𝐾 𝑝, 𝑙 ≡ det 𝐴4𝑖𝑗 = 𝑑𝑒𝑡  
𝑐𝑜𝑠𝜃𝐴 

311 + 𝑠𝑖𝑛𝜃𝐴 
411 −𝑐𝑜𝑠𝜃𝐴 

312 − 𝑠𝑖𝑛𝜃𝐴 
412

𝑐𝑜𝑠𝜃𝐴 
312 + 𝑠𝑖𝑛𝜃𝐴 

412 −𝑐𝑜𝑠𝜃𝐴 
322 − 𝑠𝑖𝑛𝜃𝐴 

422
   

The determinant is a quadratic form of 𝑐𝑜𝑠𝜃 and 𝑠𝑖𝑛𝜃 . It will be derived as  

𝐾 𝑝, 𝑙 = −𝜆1 𝑝 𝑐𝑜𝑠2𝜃 − 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 

By using an orthonormal frame where  

𝜆1 𝑝 = det(𝐴 
3𝑖𝑗 ) 

𝑎𝑛𝑑  

𝜆2 𝑝 = det(𝐴 
4𝑖𝑗 ) 

𝜆1 𝑝  , 𝜆2 𝑝   are continuous on 𝑀2.The Gauss curvature 𝐺 𝑝  is given by  

𝐺 𝑝 = 𝜆1 𝑝 + 𝜆2 𝑝  

as in [1]. 

Theorem 2: Let 𝑀2 be a 2-dimensional oriented closed manifold with a timelike immersion : 𝑀2 →
𝐿4 .  If  𝐺 𝑝 = 𝜆1 𝑝 + 𝜆2 𝑝  is negative Gauss curvature of 𝑀2 then the total absolute curvature 

𝐾∗(𝑝) at point 𝑝 is 

𝐾∗ 𝑝 = −𝜋𝐺 𝑝  

on  𝑉 and  

𝐾∗ 𝑝 =  2𝛼 − 𝜋 𝐺 𝑝 + 4 −𝜆1𝜆2 

on  𝑈  where  

𝑈 = {𝑝 ∈ 𝑀2 , 𝜆1 𝑝 > 0} 

 

𝑉 = {𝑝 ∈ 𝑀2 , 𝜆1 𝑝 ≤ 0} 

Proof: Since 𝜆1 and 𝜆2 are both negative on   𝑉 we have 

 𝐾∗ 𝑝 =   𝐾 𝑝, 𝑙  𝑑𝜃
2𝜋

0
     where 𝐾 𝑝, 𝑙  is the Lipschitz- Killing curvature   
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𝐾∗ 𝑝 =   𝐾 𝑝, 𝑙  𝑑𝜃
2𝜋

0

 

          =     −𝜆1 𝑝 𝑐𝑜𝑠2𝜃 − 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 
2𝜋

0
𝑑𝜃 

          =   −1  𝜆1 𝑝 𝑐𝑜𝑠2𝜃 + 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 
2𝜋

0
𝑑𝜃 

          =  −(𝜆1 𝑝 𝑐𝑜𝑠2𝜃 + 𝜆2 𝑝 𝑠𝑖𝑛2𝜃
2𝜋

0
)𝑑𝜃 

          = −𝜋(𝜆1 𝑝 + 𝜆2 𝑝 ) 

         = −𝜋𝐺 𝑝  

     Since 𝜆1  is  positive on 𝑈 and 𝐺 𝑝 ≤ 0 we have a negative 𝜆2 such that   𝜆2 ≥  𝜆1 . 

Total absolute curvature on 𝑈 is 

𝐾∗ 𝑝 =   𝐾 𝑝, 𝑙  𝑑𝜃
2𝜋

0

 

          =     −𝜆1 𝑝 𝑐𝑜𝑠2𝜃 − 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 
2𝜋

0
𝑑𝜃 

          =   −1  𝜆1 𝑝 𝑐𝑜𝑠2𝜃 + 𝜆2 𝑝 𝑠𝑖𝑛2𝜃 
2𝜋

0
𝑑𝜃 

         =
𝟏

𝟐
   𝜆1 + 𝜆2 +  𝜆1 − 𝜆2 𝑐𝑜𝑠2𝜃 

𝟐𝝅

𝟎
 𝑑𝜃 

           =
1

2
 𝜆1 − 𝜆2   

𝜆1+𝜆2

𝜆1−𝜆2
+ 𝑐𝑜𝑠2𝜃 

2𝜋

0
𝑑𝜃 

Define an angle α such that  

 

𝑐𝑜𝑠𝛼 = −
𝜆1+𝜆2

𝜆1−𝜆2
 ;    𝟎 < 𝛼 ≤

𝝅

𝟐
     so    𝑠𝑖𝑛𝛼 =

2 −𝜆1𝜆2

𝜆1−𝜆2
 

𝐾∗ 𝑝 =
1

2
 𝜆1 − 𝜆2   𝑐𝑜𝑠2𝜃 − 𝑐𝑜𝑠𝛼 𝑑𝜃

2𝜋

0

 

            =
1

4
 𝜆1 − 𝜆2   𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝛼 𝑑𝑡

4𝜋

0
 

            =  2𝛼 − 𝜋 𝐺 𝑝 + 4 −𝜆1𝜆2 

Theorem 3: Let 𝑀2 be a 2-dimensional oriented closed manifold with a timelike immersion : 𝑀2 →
𝐿4 .  If  𝐺 𝑝 = 𝜆1 𝑝 + 𝜆2 𝑝  is negative Gauss curvature of 𝑀2 then for the mean curvature H of 

 𝑀2 in 𝐿4 we have  

 𝐻2

𝑉

𝑑𝑉 ≥    −3𝐺2 − 2 
𝑉

 

     Proof: Let for the frame (𝑝, 𝑙1 , 𝑙2 , 𝑙3 , 𝑙4) ;  𝑙1 𝑎𝑛𝑑 𝑙2 be the principal directions with respect to 𝑙4 . 

Choose 𝐴 
𝑟𝑖𝑗  as follows 

𝐴 
311 = 𝑎 ;  𝐴 

312 = 𝐴 
321 − 𝑐 ;  𝐴 

322 = −𝑏 

𝐴 
411 = 𝑑 ;  𝐴 

422 = −𝑒 ; 𝐴 
412 = 𝐴 

421 = 0 

where a,b,c,d,e are all positive. 𝐴 
3𝑖𝑗 =  

𝑎 −𝑐
−𝑐 −𝑏

  𝑎𝑛𝑑  𝐴 4𝑖𝑗 =  
𝑑 0
0 −𝑒

   then  

𝜆1 𝑝 = det 𝐴 
3𝑖𝑗  = −𝑎𝑏 − 𝑐2 

𝜆2 𝑝 = det 𝐴 
4𝑖𝑗  = −𝑑𝑒 

where  𝜆2 ≤ 𝜆1 ≤ 0 . 
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Shape operator is given by 𝑆 =  

𝑎 −𝑐 0
−𝑐 −𝑏 0
 0    0  𝑑

        
0
0
0

  0     0       0 −𝑒

  . Mean curvature is then 

𝐻 =
𝑎 − 𝑏 + 𝑑 − 𝑒

2
 

𝐻2 =
 𝑎 − 𝑏 + 𝑑 − 𝑒 2

4
 

4𝐻2 =  𝑎 − 𝑏 2 +  𝑑 − 𝑐 2 + 2 𝑎 − 𝑏 (𝑑 − 𝑒) 

 

                    =  𝑎 − 𝑏 2 +  𝑑 − 𝑐 2 + 2 𝑎𝑑 − 𝑎𝑒 − 𝑏𝑑 + 𝑏𝑒  

Since  
𝐴 

311𝐴 
411 +  𝐴 

322  𝐴 
422 = 𝐴 

311𝐴 
422 +  𝐴 

322𝐴 
411 =  𝐴 

312𝐴 
412 + 𝐴 

421𝐴 
312  

We have                                          𝑎𝑑 − 𝑎𝑒 − 𝑏𝑑 + 𝑏𝑒 = 0 

 

4𝐻2 =  𝑎 − 𝑏 2 +  𝑑 − 𝑒 2 

4𝐻2 ≥ 4 𝑎𝑏 + 4 𝑑𝑒  

4𝐻2 ≥ 8  𝑎𝑏𝑑𝑒  

𝜆1𝜆2 =  −𝑎𝑏 − 𝑐2  −𝑑𝑒  

= 𝑎𝑏𝑑𝑒 + 𝑑𝑒𝑐2 

𝑎𝑏𝑑𝑒 = 𝜆1𝜆2 −  𝑑𝑒𝑐2 

𝑎𝑏𝑑𝑒 = 𝜆1𝜆2 + 𝜆2𝑐2 

Let 𝑐 = 1  we have 𝑎𝑏𝑑𝑒 = 𝜆1𝜆2 + 𝜆2 

4𝐻2 ≥ 8  𝜆1𝜆2 + 𝜆2  

𝐻2 ≥ 2  𝜆1𝜆2 + 𝜆2  

𝐻4 ≥ 4 𝜆1𝜆2 + 𝜆2  

For  𝑉 = {𝑝 ∈ 𝑀2 , 𝜆1 𝑝 ≤ 0} we get  

 𝐻4

𝑉

𝑑𝑉 ≥  4 𝜆1𝜆2 + 𝜆2 
𝑉

𝑑𝑉 

If we substitute 𝐺 𝑝 = 𝜆1 𝑝 + 𝜆2 𝑝  in  𝜆1 𝑝 𝜆2(𝑝) + 𝜆2(𝑝) =  𝜆2 𝑝 𝜆1(𝑝) + 1  then we get  

  𝜆1 𝑝 𝜆2(𝑝) + 𝜆2 𝑝  =    𝜆2 𝑝 [(𝐺 𝑝 − 𝜆2(𝑝)) + 1]   

                                          =    𝜆2 𝑝 𝐺 𝑝 − 𝜆2
2(𝑝) + 𝜆2 𝑝    

and since           −𝜆2𝑑𝑉 ≥ −
1

2𝑉  𝐺𝑑𝑉
𝑉

         in [1] 

 𝐻4

𝑉

𝑑𝑉 ≥  4 𝜆2𝐺 − 𝜆2
2 + 𝜆2 

𝑉

𝑑𝑉 

≥  4 𝜆2(𝐺 + 1) − 𝜆2
2 

𝑉

𝑑𝑉 

since  𝜆2 𝑝 (𝐺 𝑝 + 1) − 𝜆2
2(𝑝) ≤ 0 on V 

We get the inequality  
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 𝐻4

𝑉

𝑑𝑉 ≥  (−4𝜆2(𝐺 + 1) − 𝜆2
2)

𝑉

𝑑𝑉 

Since −
1

2
𝐺 ≤ −𝜆2 

 

 

 𝐻4

𝑉

𝑑𝑉 ≥  [−
1

2
𝐺(𝐺 + 1) −  −

1

2
𝐺 

2

]
𝑉

𝑑𝑉 =   −3𝐺2 − 2 𝑑𝑉
𝑉

 

𝐻4 ≥ −3𝐺2 − 2 ⇒ 𝐻2 ≥   −3𝐺2 − 2  

Finally we get the inequality 

 𝐻2

𝑉

𝑑𝑉 ≥    −3𝐺2 − 2  𝑑𝑉
𝑉
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