

An Inequality for Closed Manifolds with Timelike Immersion and Negative Gauss Curvature

Serpil Karagoz

Faculty of Art and Sciences, Mathematics Department, Abant Izzet Baysal University, Bolu, Turkey.

***Corresponding Author:** Serpil Karagoz, Faculty of Art and Sciences, Mathematics Department, Abant Izzet Baysal University, Bolu, Turkey.

Abstract: In this paper an inequality for closed manifolds with timelike immersion and negative Gauss curvature is derived. It is computed by means of the mean curvature H and Gauss curvature G of timelike immersed manifold.

•
$$\int_V H^2 dV \ge \int_V \sqrt{|-3G^2 - 2|} dV.$$

Keywords: Total Absolute Curvatue, Lorentz Space, Timelike Immersion, Mean Curvature, Gauss Curvature

1. INTRODUCTION

Let M^2 be an oriented closed surface with a timelike immersion : $M^2 \to L^4$. Let $F(M^2)$ and $F(L^4)$ be the bundles of orthonormal frames M^2 and L^4 respectively. Let B be the set of elements $b = (p, l_1, l_2, l_3, l_4)$ such that $(p, l_1, l_2) \in F(M^2)$ and $b = (x(p), l_1, l_2, l_3, l_4) \in F(L^4)$ whose orientation is coherent with the one of L^4 , identifying l_i with $dx(l_i)$, i = 1,2 where l_i are unit vectors and l_2 is a timelike vector.

Define $\tilde{x}: B \to F(L^4)$ naturally by $b \to (x(p), l_1, l_2, l_3, l_4)$. The structure equations of L^4 are given by

$$dx = \sum \widetilde{w}_{A}l_{A} \qquad dl_{A} = \sum \widetilde{w}_{AB}l_{B} \qquad \widetilde{w}_{AB} + \widetilde{w}_{BA} = 0$$
$$d\widetilde{w}_{A} = \sum \widetilde{w}_{B}\Lambda \widetilde{w}_{BA} \qquad d\widetilde{w}_{AB} = \sum \widetilde{w}_{AC}\Lambda \widetilde{w}_{CB} \quad A, B, C = 1,2,3,4$$

where \widetilde{w}_A , \widetilde{w}_{AB} are differential 1- forms on $F(L^4)$.

Let w_A , w_{AB} be induced 1- forms on B from \widetilde{w}_A , \widetilde{w}_{AB} by the mapping \widetilde{x} . Then we have

$$w_3 = w_4 = 0$$

$$w_{i3} = A_{3i1}w_1 + A_{3i2}w_2$$

$$w_{i4} = A_{4j1}w_1 + A_{4j2}w_2$$
; $i, j = 1, 2$

Let $(p, l_1, l_2, \tilde{l}_3, \tilde{l}_4)$ be a local cross-section of $B \to F(M^2)$. The restriction of A_{rij} onto the image of local cross-section is denoted by \bar{A}_{rij} where = 3, 4.

We can compute second fundamental form as

$$II(dp,dp) = \langle S(dp),dp \rangle$$

where S is the shape operator of the immersion

$$II(dp, dp) = w_1^2 < S(l_1), l_1 > +2w_1w_2 < S(l_1), l_2 > +w_2^2 < S(l_2), l_2 >$$

$$S(l_1) = D_{11}l_4 = A_{411}l_1 - A_{421}l_2$$

$$S(l_2) = D_{12}l_4 = A_{412}l_1 - A_{422}l_2$$

An Inequality for Closed Manifolds with Timelike Immersion and Negative Gauss Curvature

$$S = \begin{pmatrix} A_{411} & -A_{421} \\ A_{412} & -A_{422} \end{pmatrix}$$

$$II(dp, dp) = A_{411}w_1^2 + 2A_{412}w_1w_2 + A_{422}w_2^2$$

is the second fundamental form.

Theorem 1: Let M^2 be a 2-dimensional oriented closed manifold with a timelike immersion $: M^2 \to L^4$. If (A_{4ij}) is the shape operator of the timelike immersion then Lipschitz-Killing curvature K(p, l) is given by

$$K(p,l) = -\lambda_1(p)\cos^2\theta - \lambda_2(p)\sin^2\theta$$

where l is the unit normal vector and

$$\lambda_1(p) = \det(\bar{A}_{3ij})$$

 $\lambda_2(p) = \det(\bar{A}_{4ij})$

Proof: Choose *l* as

$$l = l_4 = \cos \theta \, \tilde{l}_3 + \sin \theta \tilde{l}_4$$
$$A_{4ii} = \cos \theta \bar{A}_{3ii} + \sin \theta \bar{A}_{4ii} ; i, j = 1,2$$

The Lipschitz-Killing curvature K(p, l) is determined by

$$K(p,l) \equiv \det A_{4ij} = \det \begin{pmatrix} \cos\theta \bar{A}_{311} + \sin\theta \bar{A}_{411} & -\cos\theta \bar{A}_{312} - \sin\theta \bar{A}_{412} \\ \cos\theta \bar{A}_{312} + \sin\theta \bar{A}_{412} & -\cos\theta \bar{A}_{322} - \sin\theta \bar{A}_{422} \end{pmatrix}$$

The determinant is a quadratic form of $cos\theta$ and $sin\theta$. It will be derived as

 $K(p,l) = -\lambda_1(p)\cos^2\theta - \lambda_2(p)\sin^2\theta$

By using an orthonormal frame where

$$\lambda_1(p) = \det(\bar{A}_{3ij})$$

and
 $\lambda_2(p) = \det(\bar{A}_{4ij})$

 $\lambda_1(p)$, $\lambda_2(p)$ are continuous on M^2 . The Gauss curvature G(p) is given by

$$G(p) = \lambda_1(p) + \lambda_2(p)$$

as in [1].

Theorem 2: Let M^2 be a 2-dimensional oriented closed manifold with a timelike immersion $: M^2 \to L^4$. If $G(p) = \lambda_1(p) + \lambda_2(p)$ is negative Gauss curvature of M^2 then the total absolute curvature $K^*(p)$ at point p is

$$K^*(p) = -\pi G(p)$$

on V and

$$K^*(p) = (2\alpha - \pi)G(p) + 4\sqrt{-\lambda_1\lambda_2}$$

on U where

$$U = \{p \in M^2, \lambda_1(p) > 0\}$$

$$V = \{p \in M^2 , \lambda_1(p) \le 0\}$$

Proof: Since λ_1 and λ_2 are both negative on *V* we have

 $K^*(p) = \int_0^{2\pi} |K(p, l)| d\theta$ where K(p, l) is the Lipschitz-Killing curvature

$$K^{*}(p) = \int_{0}^{2\pi} |K(p,l)| d\theta$$

= $\int_{0}^{2\pi} |-\lambda_{1}(p)\cos^{2}\theta - \lambda_{2}(p)\sin^{2}\theta| d\theta$
= $\int_{0}^{2\pi} |-1||\lambda_{1}(p)\cos^{2}\theta + \lambda_{2}(p)\sin^{2}\theta| d\theta$
= $\int_{0}^{2\pi} -(\lambda_{1}(p)\cos^{2}\theta + \lambda_{2}(p)\sin^{2}\theta) d\theta$
= $-\pi(\lambda_{1}(p) + \lambda_{2}(p))$
= $-\pi G(p)$

Since λ_1 is positive on *U* and $G(p) \leq 0$ we have a negative λ_2 such that $|\lambda_2| \geq |\lambda_1|$. Total absolute curvature on *U* is

$$K^*(p) = \int_0^{2\pi} |K(p,l)| d\theta$$

= $\int_0^{2\pi} |-\lambda_1(p)\cos^2\theta - \lambda_2(p)\sin^2\theta| d\theta$
= $\int_0^{2\pi} |-1||\lambda_1(p)\cos^2\theta + \lambda_2(p)\sin^2\theta| d\theta$
= $\frac{1}{2} \int_0^{2\pi} |(\lambda_1 + \lambda_2) + (\lambda_1 - \lambda_2)\cos^2\theta| d\theta$
= $\frac{1}{2} (\lambda_1 - \lambda_2) \int_0^{2\pi} \left| \frac{\lambda_1 + \lambda_2}{\lambda_1 - \lambda_2} + \cos^2\theta \right| d\theta$

Define an angle α such that

$$cos\alpha = -\frac{\lambda_1 + \lambda_2}{\lambda_1 - \lambda_2}; \quad \mathbf{0} < \alpha \le \frac{\pi}{2} \quad \text{so} \quad sin\alpha = \frac{2\sqrt{-\lambda_1\lambda_2}}{\lambda_1 - \lambda_2}$$
$$K^*(p) = \frac{1}{2}(\lambda_1 - \lambda_2) \int_0^{2\pi} |cos2\theta - cos\alpha| d\theta$$
$$= \frac{1}{4}(\lambda_1 - \lambda_2) \int_0^{4\pi} |cost - cos\alpha| dt$$
$$= (2\alpha - \pi)G(p) + 4\sqrt{-\lambda_1\lambda_2}$$

Theorem 3: Let M^2 be a 2-dimensional oriented closed manifold with a timelike immersion $: M^2 \to L^4$. If $G(p) = \lambda_1(p) + \lambda_2(p)$ is negative Gauss curvature of M^2 then for the mean curvature H of M^2 in L^4 we have

$$\int_V H^2 \, dV \ge \int_V \sqrt{|-3G^2 - 2|}$$

Proof: Let for the frame (p, l_1, l_2, l_3, l_4) ; l_1 and l_2 be the principal directions with respect to l_4 . Choose \bar{A}_{rij} as follows

$$\bar{A}_{311} = a$$
; $\bar{A}_{312} = \bar{A}_{321} - c$; $\bar{A}_{322} = -b$
 $\bar{A}_{411} = d$; $\bar{A}_{422} = -e$; $\bar{A}_{412} = \bar{A}_{421} = 0$

where a,b,c,d,e are all positive. $\bar{A}_{3ij} = \begin{pmatrix} a & -c \\ -c & -b \end{pmatrix}$ and $\bar{A}_{4ij} = \begin{pmatrix} d & 0 \\ 0 & -e \end{pmatrix}$ then $\lambda_1(p) = \det(\bar{A}_{3ij}) = -ab - c^2$

$$\lambda_2(p) = \det(\bar{A}_{4ij}) = -de$$

where $\lambda_2 \leq \lambda_1 \leq 0$.

Shape operator is given by
$$S = \begin{pmatrix} a & -c & 0 & 0 \\ -c & -b & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 0 & -e \end{pmatrix}$$
. Mean curvature is then

$$H = \frac{a - b + d - e}{2}$$

$$H^{2} = \frac{(a - b + d - e)^{2}}{4}$$

$$4H^{2} = (a - b)^{2} + (d - c)^{2} + 2(a - b)(d - e)$$

 $= (a - b)^{2} + (d - c)^{2} + 2(ad - ae - bd + be)$

Since

$$\bar{A}_{311}\bar{A}_{411} + \bar{A}_{322}\bar{A}_{422} = \bar{A}_{311}\bar{A}_{422} + \bar{A}_{322}\bar{A}_{411} = \bar{A}_{312}\bar{A}_{412} + \bar{A}_{421}\bar{A}_{312}$$
$$ad - ae - bd + be = 0$$

We have

$$4H^{2} = (a - b)^{2} + (d - e)^{2}$$

$$4H^{2} \ge 4|ab| + 4|de|$$

$$4H^{2} \ge 8\sqrt{|abde|}$$

$$\lambda_{1}\lambda_{2} = (-ab - c^{2})(-de)$$

$$= abde + dec^{2}$$

$$abde = \lambda_{1}\lambda_{2} - dec^{2}$$

$$abde = \lambda_{1}\lambda_{2} + \lambda_{2}c^{2}$$

Let c = 1 we have $abde = \lambda_1 \lambda_2 + \lambda_2$

$$4H^{2} \ge 8\sqrt{|\lambda_{1}\lambda_{2} + \lambda_{2}|}$$
$$H^{2} \ge 2\sqrt{|\lambda_{1}\lambda_{2} + \lambda_{2}|}$$
$$H^{4} \ge 4|\lambda_{1}\lambda_{2} + \lambda_{2}|$$

For $V = \{p \in M^2 , \lambda_1(p) \le 0\}$ we get

$$\int_{V} H^{4} dV \ge \int_{V} 4|\lambda_{1}\lambda_{2} + \lambda_{2}| dV$$

If we substitute $G(p) = \lambda_1(p) + \lambda_2(p)$ in $|\lambda_1(p)\lambda_2(p) + \lambda_2(p)| = |\lambda_2(p)\lambda_1(p) + 1|$ then we get

$$|\lambda_{1}(p)\lambda_{2}(p) + \lambda_{2}(p)| = |\lambda_{2}(p)[(G(p) - \lambda_{2}(p)) + 1]|$$

= $|\lambda_{2}(p)G(p) - \lambda_{2}^{2}(p) + \lambda_{2}(p)|$

and since

$$\int_{V} -\lambda_{2} dV \ge -\frac{1}{2} \int_{V} G dV \quad \text{in [1]}$$

$$\int_{V} H^{4} dV \ge \int_{V} 4 \left| \lambda_{2} G - \lambda_{2}^{2} + \lambda_{2} \right| dV$$

$$\ge \int_{V} 4 \left| \lambda_{2} (G+1) - \lambda_{2}^{2} \right| dV$$

since $\lambda_2(p)(G(p) + 1) - \lambda_2^2(p) \le 0$ on *V* We get the inequality

$$\int_{V} H^{4} dV \ge \int_{V} (-4\lambda_{2}(G+1) - \lambda_{2}^{2}) dV$$

Since $-\frac{1}{2}G \le -\lambda_2$

$$\int_{V} H^{4} dV \ge \int_{V} \left[-\frac{1}{2}G(G+1) - \left(-\frac{1}{2}G \right)^{2} \right] dV = \int_{V} (-3G^{2} - 2) dV$$
$$H^{4} \ge -3G^{2} - 2 \Rightarrow H^{2} \ge \sqrt{|-3G^{2} - 2|}$$

Finally we get the inequality

$$\int_{V} H^2 dV \ge \int_{V} \sqrt{|-3G^2 - 2|} dV$$

REFERENCES

- [1] Bang-Yen Chen , On an inequality of T.J.Willmore, Proceedings of the American Mathematical Society, 1970
- [2] B.O'Neill, Semi-Riemannian Geometry, Academic Press, NewYork, 1983

Citation: S. Karagoz, " An Inequality for Closed Manifolds with Timelike Immersion and Negative Gauss Curvature ", International Journal of Scientific and Innovative Mathematical Research, vol. 6, no. 5, p. 14-18, 2018., http://dx.doi.org/10.20431/2347-3142.0605002

Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.