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Abstract: In this paper an inequality for closed manifolds with timelike immersion and negative Gauss
curvature is derived. It is computed by means of the mean curvature H and Gauss curvature G of timelike
immersed manifold.

o [, H2dV = [, /]—3GZ —2[dV
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1. INTRODUCTION

Let M? be an oriented closed surface with a timelike immersion : M2 — L* . Let F(M?) and F(L*) be
the bundles of orthonormal frames MZand L* respectively. Let B be the set of elements
o= (p, ll! lz, 13, l4) such that (p, ll, lz) € F(MZ) and b = (X(p), ll! lz, 13, l4_) S F(L4) whose
orientation is coherent with the one of L*, identifying I; with dx(l;), i = 1,2 where I; are unit
vectors and [, is a timelike vector.

Define ¥ : B — F(L*) naturally by b — (x(p), 1, 13, 13, 14). The structure equations of L*are given by
dx=ZWAlA dlA ZZWABIB WAB +WBA =0

dWA = ZWBA WBA dWAB = Z WAC AWCB A, B, C = 1,2,3,4

where W, , W, are differential 1- forms on F(L*).
Let wy ,wyp be induced 1- forms on B from W, , W,z by the mapping x". Then we have
w3 =w; =0
Wiz = Aziwy + Azipwp

s Wig = A4j1W1 + A4_j2W2 ) l,] = 1,2
Let (p,l,15,15,1,) be a local cross-section of B — F(M?). The restriction of A,;; onto the image of
local cross-section is denoted by A,;; where = 3,4 .

We can compute second fundamental form as
1(dp,dp) =< S(dp).dp >
where S is the shape operator of the immersion

Il(dp, dp) = W12 < S(ll), ll > +2W1W2 < S(ll), lz > +W22 < S(lz), lz >

5(11) = Diqly = Ay ly — Agprly
S(y) = Digly = Aggzly — Agoly
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5= (A411 —A421)
Ay —Agz

11(dp, dp) = A1 Wi + 2441, Wiwy + Agr W3
is the second fundamental form.

Theorem 1: Let M? be a 2-dimensional oriented closed manifold with a timelike immersion : M? —
L* | If (A4i) s the shape operator of the timelike immersion then Lipschitz- Killing curvature
K(p, 1) is given by

K, D) = —A1(p)cos?8 — A, (p)sin?6
where [ is the unit normal vector and
L) = det(A_3ij)
A (p) = det(filij)
Proof: Choose [ as
1 =1, = cosBl; + sinbl,
Ay = cosOAz;; + sinfAy; ;i,j = 1,2
The Lipschitz- Killing curvature K(p, 1) is determined by

A moA — Az, — SinBA,
K(p,l) EdetA4ij :det(COSG 311 + sinf 411 cosf 312 sinf 412>

cosOA3q, + sinfA,, —cosBAs,, — sinfA,,,
The determinant is a quadratic form of cos6 and sin6 . It will be derived as
K(p,1) = —A1(p)cos?8 — A,(p)sin?0
By using an orthonormal frame where
A (p) = det(43;)
and
A2 (p) = det(Ayy;)
A1 (p) , 2,(p) are continuous on M2.The Gauss curvature G(p) is given by

G(p) = 21:(p) + 1,(p)
as in [1].

Theorem 2: Let M? be a 2-dimensional oriented closed manifold with a timelike immersion : M? —
L* . If G(p) = 1(p) + A,(p) is negative Gauss curvature of M? then the total absolute curvature
K*(p) at point p is

K*(p) = —nG(p)
on V and
K*(p) = Qa —m)G(p) + 4/ M1,
on U where
U={peM?, 1(p)>0}

V={peM, () <0}

Proof: Since 4, and A, are both negative on V we have

K*(p) = Ozan(p, D|dé  where K(p, 1) is the Lipschitz- Killing curvature
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2m

K*(p) = f K (p, D)|d6

0

= fOZEI—/ll (p)cos?0 — A, (p)sin?6| do
= 02n|—1||/11 (p)cos?6 + A, (p)sin?6| do
= fozn —(A1(p)cos?0 + A,(p)sin?6)do

= —1(1(p) + 22(p))
= —nG(p)
Since 4, is positive on U and G (p) < 0 we have a negative 1, such that |1,| > [14].
Total absolute curvature on U is

21

K*(p) = f K (p, 1)|d6

0

= foznl—)ll (p)cos?0 — A, (p)sin?6| do

02n|_1| |41 (p)cos?0 + A, (p)sin?6| do
= %f02”|(/11 +25) + (A, — A,)cos26| d6
—_ 1 2r ﬂl+ﬂ.2
=-(h —22) [ |m + 60329| do

Define an angle a such that

242 n ] 2112
cosa=—"22 0<a<= SO sina= 172
T2, 2 A1—1y

1 2m
K*(p) = 2 (4 — Az)j |cos20 — cosa|dO
0

= %(/’ll - 1) f04”|cost — cosa|dt

= (Za - T[)G(p) + 4‘1/ —/11/12

Theorem 3: Let M? be a 2-dimensional oriented closed manifold with a timelike immersion : M? —
L* . If G(p) = A1(p) + A,(p) is negative Gauss curvature of M? then for the mean curvature H of
M? in L* we have

fHZdvzf VI-3G6% =2|
%4 %4

Proof: Let for the frame (p, 11,15, 13,14) ; 11 and [, be the principal directions with respect to I, .

Choose 4,; as follows

/1311 =a; 1‘T312 = /1321 —C; /1322 =-b
Ayy =d; Ay =—e; Agp =A4 =0
—C d o0

where a,b,c,de are all positive. A3;; = (_ac —b) and Ay = ( ) then

0 —e
A (p) = det(A3;) = —ab — ¢?
2.2 (p) = det(fL“j) = —de

where A< <0.
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a — 0 0
Shape operator is given by § = BC _(l)’ ?1 8 . Mean curvature is then
0 0 0 -e
= a—b+d-—e
2
12 :(a—b:d—e)z

4H? = (a—b)*+ (d —c)*> + 2(a—b)(d — e)

= (a—b)?>+(d —c)? + 2(ad — ae — bd + be)

Since
Az114411 + Azpp Agop = Az114422 + Azp2As11 = Az124412 + A1 4312

We have ad —ae —bd +be =0

4H? = (a — b)? + (d — e)?
4H? > 4|ab| + 4|de|

4H? > 8./|abde|
M2, = (—ab — c?)(—de)
= abde + dec?

abde = 1,1, — dec?
abde = 1,1, + A,c?
Letc =1 we have abde = 114, + A,
4H? > 8,/|11 ;5 + A,
H? > 2./|10;25 + 15|
H* > 4|2,2, + 1, |
For V = {p € M?,1,(p) < 0} we get

fH‘*dvzf 4145 + Ayl AV
%4 %4

If we substitute G (p) = 4, (p) + A,(p) in |4 (P)A2(p) + 12(p)| = |22(P)A1(p) + 1] then we get
| 11()A2(p) + 2P| = | L,(I[(GC(P) — A,(p)) + 1] |
=| 2 @)G(P) = 25() + 1. (p) |

and since J, —AdV = —%fv Gdv in[1]
j H*av > f 42,6 — 25 + 2| av
%4 14

> f 4|2,(G + 1) — 23| av
%4

since A,(p)(G(p) +1) —A3(p) <0onV
We get the inequality
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J H4dV2f (—42,(G + 1) — 23) dV
%4 14

Since —%G <-4

2

fVH‘*dvsz [—%G(G+1)—<—%G) ]dV=fV (=3G? = 2)dV

H* > -3G%—-2= H?>./|-3G% - 2|
Finally we get the inequality

fﬂzdvzf |—3G2 — 2| dV
74 74
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