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1. INTRODUCTION

The concept of fixed point theory and contraction mapping was extended and elaborated with the
introduction of Contraction principle by Banach [2]. Concept of 2-metric space was introduced by
Gahler [3] having the area of triangle in R? as the inspirative example. It has been shown by Gahler
that in 2-metric d is non-negative. After Gahler there was a flood of new results obtained by many
authors in these spaces [4-8]. Military applications of fixed point theory in 2-metric spaces can be
found, as well as applications in Medicine and Economics [9-11].

Then Naidu and Prasad [12] introduced the concept of weakly commuting pairs of self-mapping on a
2-metric space, then others [13] [14] and [15] have proved several common fixed point theorem by
using these concept.

In this paper | proved a fixed point theorem in 2-metric space by using Nesic type contractive
definition [1] and the result of Lohani and Badshah [16] also we shall use the Lemma of Singh [17].

Mathematical preliminaries

Definition 2.1 : A 2- metric space is a set X with non negative real Valued. function d on X x X x X
satisfying the following conditions :

(M,) for two distinct point x,y in X there exist a point z
in X such that d(x,y,z) # 0.

(M) d(x,y,z) = 0 if at least two of x, y, z are equal.

(M3) d(x,y.z) =d(x,zy) = d(y, z, x)

(My) d(x,y,z) <d(x,y,u) +d (x,u,2) +d (u,y,2) Vv x,y,Z
anduin X.

The function d is called 2 metric for the space X and (X,d) is called 2 — metric space. “Geometrically
2 — metric represent the area”.

Example : Let a mapping d : R>—[0,+ox) be defined by
d(x,y,z)=min{x—y|ly -z, |z—x}.

Then d is a 2-metric on R, i.e., the following inequality holds:
d(x,y,z) <d(x,y, t) +d(y, z, t) + d(z, x, 1),

for arbitrary real numbers x, y, z, t.
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Definition 2.2 :A sequence { X, } in a 2-metric space ( X,d) is said to be convergent to a point X €
X

limx, =X, iflimd (x,,x,z) =0 forall ze X
n—oo n—o0
The point x is called the limit of the sequence {x,} in X.
Definition 2. 3: A sequence {X,} in a 2-metric space (X, d) is called a Cauchy sequence if
lim d(Xn,Xm,a) = 0 as n,m —oo for all a € X.

Definition 2.4 : A 2-metric space ( X,d) is said to be complete if every Cauchy sequence in X is
convergent .

Definition 2.5 : A 2-metric space ( X,d) is called bounded if there exist a constant M such that
d(x,y,z)< M forall x,y,z € X.
Definition 2.6 : A mapping f in 2 — metric space is called orbitally continuous if for all a in X,
d(f'x,u,a) >0asn— oo
Implies
d (ff'x,fu,a) > 0as n— o

Definition 2.7: A mapping S from a 2- metric space (X,d ) into itself is said to be sequentially
continuous at a point xeX if every sequence { x,} in X such that

lim d(X,x,2)=0 forallzeX
n— o
lim d(Sx, Sx,z)=0
n— o
Every convergent sequence in a 2-metric space is a cauchy sequence.

Definition 2.8: A 2 —metric space d which is continuous in all of its three arguments is called
continuous.

Remarks:

0] Every convergent sequence in 2- metric space is Cauchy.

(i) Geometrically 2-metric space represents Area.

For proving our theorem we shall use the lemma of Singh [19].

Lemma 2.1: Let {x,} be a sequence in complete 2-metric space X. if there exists h € [0,1] such that
d(Xn, Xn+1, @) < hd (Xn_1, Xp, @)

for some a € X then {x,) converges to point in X.

Drawing inspiration from Nesic type contractive definition [1] and the result of Lohani and Badshah
[18] , we prove the following theorem in 2-metric spaces.

2. MAIN RESULTS

Theorem 2.1: Let f be an orbitally continuous self —map from complete 2-metric space X into itself,
if f satisfies.

[1+ pd(X,y,z) < p max { max { d(x, fx, a) . d(y, fy, a) ,

d(x, fy, a). d(y, fx, a)}
+gmax {d(x,y,a),d(x, fx,a),d(y, fy,a} ... (1.1)
for all x, yand ae X and p >0, 0<g<l1 , then for each x € X,
the sequence {T" x} converges to a unique fixed point.
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Proof: Let X, € X be an arbitrary point and we define { x,} as
X1 = f(Xo), Xa = f(Xy),---------- yXn = F(Xn1) ) et (1.2)
Suppose Xon # Xoney for every x =0,1,2,------- , then
[1+p d (Xan, Xons1, @) ] d (F (Xan), F(Xansa), @)
<pmax {d (X, f(Xan),a). d Xons1, F(Xon+1), @) ,
d( Xon, T( Xon+1), @) . d(Xons1, T(X2n), @) 3 +
g max {d(Xzn, Xzn+1, ),d(Xan,f(X2n), ), d(Xane1, F(Xn+1,2)}
which implies,
[ 1+p d ( Xan, Xane1, @) ] d (Xane1, Xanez, @)
< pmax{d(Xan, Xon+1, 8).d(Xan+1,d(Xon+2), 8),d(Xon,Xon+2, @ )}
+q max{d(Xzn, Xon+1,2), d(Xan, Xon+1, @), d(Xon+1, Xone2, )}
d (Xan+1, Xane2, @) < @ Max {d(Xzn,Xan+1,2),0(X2n+1 ,Xzn+2,3) }
since g<1, 0<q/(2-q) < g, we have
d(Xon+1s Xone2, @) S QA( Xopy Xone1y @) ceevevreens (1.3)

Now(1.3) hold for all a € x. Hence in view of lemma 2.1, the sequence {x,} converges
to some fixed point u € X. then for all a e X,

limd(X,, u,a) =0 as n— oo
Which implies,

limd (f" (xo), u,a) =0 as n —
Since f is orbitally continuous, we have
lim d( f(f"(xo)), f(u), a) = 0 as n— oo
lim d( ™ ( xo), f(u), a) =0 as n—oow
From the definition of 2-metric space,
d(u,f(u),a) < d(u,f(u), " (xo)) + d(u, F™* ( xo), f(u))

+d(F™" (xo), f(u), )

which tends to zero as n — .
Consequently, d (u, f(u),a)=0=f(u)=u

Uniqueness : For uniqueness of u, suppose v € X be another common fixed point of f such that v # u.
hence there exists a point

a € X such that , d(u,v,a) #0 then from (1.1) we have
[1+ P d(u, v, a)] d(fu, fv, a) < p max {d(u,fu,a). d(v, fv,a),
d(u, fv, a). d(v, fu, a)}
+g max {d(u, v, a), d(u, fu,a),d (v, fv,a)}
ie.[1+pd(u,v,a)]d(u,v,a)< pmax{d(u,u,a).d(v,v,a),
d(u,v,a).d(v,u,a)}
+g max {d(u,v,a),d(u,u,a),d(v,v,a)}
d(u,v,a)<qd(u,v,a)
d(u, v, a) < d(u,v,a)which is a Contradiction.
Hence ,d (u, v,a) =0 which impliesthatu=v .
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The next result is the generalization of Iseki [12].
Theorem 2.2:
Let f; and f, be mapping of a complete bounding 2-metric space X into itself satisfying,

p.d (fix, f2y, @) + pd (x, fix,a) + pad (y, f2y,a) =

min { d(x, foy,a) d(y,fix,a)} <qd (x,y,a) ........... (2.2)

For all x,y,a € X there exist py,p2,ps, q are real number such that

P1+P2+Ps>0, q-p220,0-p; 20

Then f; and f, have a common fixed point.

Proof:

Let X, € X. we define {X,}
by Xons1 = F1 (Xzn)

Xane2 = T2 (Xan +1)

then we get,

d (Xn, X1, 2) < " d (X, X1,8)

where o = (

—p2
qp)<
pl+p3

which implies that {x,} is Cauchy sequence and has limit say u € X. Then

d(flu,u,a) < d(flu, u, X2n+2) + d(flu, Xon+2, a) +d (X2n+2,u,a)
from (2.2)
pld (flal Xon+2, a) + pZd (u! Tlluia) + p3d (X2n+11 Xon+2, a) - mln { d(ua a2n+21 a)

d (Xzn+1, fru,a) 1< qd (u, Xzn42,0)

by letting n— oo we get
(p1 +p2) d (fru, u,2) <0
We find d(fyu,u,q) =0

for all a € X. hence f;u = u.

similarly f,u =u

Thus u is a common fixed point of f; and f,.
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