On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$

S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$, S. Aarthy Thangam ${ }^{3 *}$
${ }^{1,2}$ Professor, Department of Mathematics Shrimati Indira Gandhi College, Tamil Nadu, India
$3^{3 *}$ Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Tamil Nadu, India
*Corresponding Author: S. Aarthy Thangam, Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Tamil Nadu, India.

Abstract

The system of double equations represented by is considered for finding their integral solutions for $u=1$ to 5. A few interesting properties among the solutions are presented.

Keywords: System of double equations, integer solutions.

1. Introduction

A Quartic model of an elliptic curve representing the system of Diophantine equations $x^{2}-6 y^{2}=-5, x=a z^{2}-b$ has been analysed by Mignotte and Petho [1] for $a=2$ and $b=1$ by using the Siegal-Baker method. An elementary proof of the above system of equations for $a=2$ and $b=1$ has been discussed in [2] by Cohn. In [3], Le proposed an effective method for solving the system of equations $x^{2}-D y^{2}=1-D, x=2 z^{2}-1$ where $D-1$ is the power of an odd prime. The pair of pell equations of the form $x^{2}-a y^{2}=1, y^{2}-b z^{2}=1$ where a and b are distinct non-square positive integers has been studied in [4-6]. In [7], it has been proved that the system of equations $x^{2}-\left(4 m^{2}-1\right) y^{2}=1, y^{2}-b z^{2}=1$ for positive integers m and b has atmost one positive integer solution. In [8], it has been shown that the system of pell equations $y^{2}-5 x^{2}=4, z^{2}-442 x^{2}=441$ has no positive integer solutions. In this context, one may refer [9-15]. The above results motivated us to search for the integer solutions for some other choices of special double Diophantine equations. This communication concerns with yet another interesting system of double Diophantine equations namely $y-x=u^{2}, y^{3}-x^{3}=v^{2}$ for its infinitely many non-zero distinct integer solutions.

2. Method of analysis

The system of double equations to be solved is

$$
\begin{align*}
& y-x=u^{2} \tag{1}\\
& y^{3}-x^{3}=v^{2} \tag{2}
\end{align*}
$$

Eliminating y between (1) and (2), the resulting equation is

$$
\begin{equation*}
4 v^{2}=3 u^{2}\left(2 x+u^{2}\right)^{2}+u^{6} \tag{3}
\end{equation*}
$$

Let $Y=2 v, X=2 x+u^{2}, D=3 u^{2}, \sigma=u^{3}$
Then (3) becomes,

$$
\begin{equation*}
Y^{2}=D X^{2}+\sigma^{2} \tag{5}
\end{equation*}
$$

whose initial solution is $\left(X_{0}, Y_{0}\right)$.
To find the other solutions of (5), consider the pellian

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$

$$
\begin{equation*}
Y^{2}=D X^{2}+1 \tag{6}
\end{equation*}
$$

The general solution $\left(\tilde{X}_{n}, \tilde{Y}_{n}\right)$ of (6) is given by

$$
\tilde{X}_{n}=\frac{1}{2 \sqrt{D}} g_{n}, \tilde{Y}_{n}=\frac{1}{2} f_{n}
$$

where $f_{n}=\left(\tilde{Y}_{0}+\sqrt{D} \tilde{X}_{0}\right)^{n+1}+\left(\tilde{Y}_{0}-\sqrt{D} \tilde{X}_{0}\right)^{n+1}$

$$
g_{n}=\left(\tilde{Y}_{0}+\sqrt{D} \tilde{X}_{0}\right)^{n+1}-\left(\tilde{Y}_{0}-\sqrt{D} \tilde{X}_{0}\right)^{n+1}
$$

in which $\left(\tilde{X}_{0}, \tilde{Y}_{0}\right)$ is the initial solution of (6).
Applying the lemma of Brahmagupta between the solutions $\left(X_{0}, Y_{0}\right)$ and $\left(\tilde{X}_{n}, \tilde{Y}_{n}\right)$, we have

$$
\begin{aligned}
& X_{n+1}=\frac{X_{0}}{2} f_{n}+\frac{Y_{0}}{2 \sqrt{D}} g_{n} \\
& Y_{n+1}=\frac{Y_{0}}{2} f_{n}+\frac{X_{0}}{2} \sqrt{D} g_{n}
\end{aligned}
$$

In view of (4) and (1), the general values for x and y satisfying (1) and (2) are given by

$$
\left.\begin{array}{l}
x_{n+1}=\frac{1}{2}\left(X_{n+1}-u^{2}\right) \tag{7}\\
y_{n+1}=\frac{1}{2}\left(X_{n+1}+u^{2}\right)
\end{array}\right\}
$$

To analyse the nature of solutions, one has to go for particular values for u . A few illustrations are given below:

2.1 Illustration: 1

Let $u=1$
Then, using (8) in (5), the corresponding equation under consideration is

$$
\begin{equation*}
Y^{2}=3 X^{2}+1 \tag{9}
\end{equation*}
$$

After performing a few calculations, the corresponding solution to (1), (2) are given by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{2}\left(X_{n+1}-1\right) \\
& y_{n+1}=\frac{1}{2}\left(X_{n+1}+1\right), \quad n=-1,1,3,5, \ldots
\end{aligned}
$$

where $X_{n+1}=\frac{1}{2} f_{n}+\frac{1}{\sqrt{3}} g_{n}$
in which $f_{n}=(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}$

$$
g_{n}=(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}
$$

A few numerical examples are presented in Table:1 below
Table 1. Numerical Examples

n	x_{n+1}	y_{n+1}
-1	0	1
1	7	8
3	104	105
5	1455	1456

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$

From the above table, we have the following observations:

1. The values of x_{n+1} and y_{n+1} are alternatively even and odd.
2. $26 y_{2 n+6}-362 x_{2 n+4}-192$ is a perfect square
3. $12 y_{2 n+4}-156 x_{2 n+2}-76$ is a Nasty number
4. $2 y_{3 n+5}-26 x_{3 n+3}+6 y_{n+3}-78 x_{n+1}-56$ is a cubical integer
5. $\left(2 y_{4 n+6}-26 x_{4 n+4}-16\right)+4\left(2 y_{n+3}-26 x_{n+1}-14\right)^{2}$ is a Biquadratic integer
6. $x_{n+5}=14 y_{n+3}-x_{n+1}-8$
7. Each of the following expressions in Table: 2 represent Hyperbolas:

Table 2. (Hyperbolas)

S.no	Hyperbola	(P, Q)
1	$3 P^{2}-Q^{2}=12$	$\left(2 y_{n+3}-26 x_{n+1}-14,45 x_{n+1}-3 y_{n+3}+24\right)$
2	$3 P^{2}-Q^{2}=12$	$\left(26 y_{n+5}-362 x_{n+3}-194,627 x_{n+3}-45 y_{n+5}+336\right)$
3	$12 P^{2}-Q^{2}=2352$	$\left(x_{n+5}-181 y_{n+1}+91,627 y_{n+1}-3 x_{n+5}-315\right)$

8. Each of the following expressions in Table: 3 represent Parabolas:

Table 3. (Parabolas)

S.no	Parabola	(P, Q)
1	$3 P-Q^{2}=12$	$\left(2 y_{2 n+4}-26 x_{2 n+2}-12,45 x_{n+1}-3 y_{n+3}+24\right)$
2	$3 P-Q^{2}=12$	$\left(26 y_{2 n+6}-362 x_{2 n+4}-192,627 x_{n+3}-45 y_{n+5}+336\right)$
3	$84 P-Q^{2}=2352$	$\left(x_{2 n+6}-181 y_{2 n+2}+105,627 y_{n+1}-3 x_{n+5}-315\right)$

2.2 Illustration: 2

Let $u=2$
Then, using (10) in (5), the corresponding equation under consideration is

$$
\begin{equation*}
Y^{2}=12 X^{2}+64 \tag{11}
\end{equation*}
$$

Following the procedure as presented above, the corresponding solution to (1), (2) are given by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{2}\left(X_{n+1}-4\right) \\
& y_{n+1}=\frac{1}{2}\left(X_{n+1}+4\right), \quad n=-1,0,1,2, \ldots
\end{aligned}
$$

where $X_{n+1}=2 f_{n}+\frac{4}{\sqrt{3}} g_{n}$
in which $f_{n}=(7+2 \sqrt{12})^{n+1}+(7-2 \sqrt{12})^{n+1}$

$$
g_{n}=(7+2 \sqrt{12})^{n+1}-(7-2 \sqrt{12})^{n+1}
$$

A few numerical examples are presented in Table: 4 below
Table 4. Numerical examples

n	x_{n+1}	y_{n+1}
-1	0	4
0	28	32
1	416	420
2	5820	5824

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$

From the above table, we have the following observations:

1. The values of x_{n+1} and y_{n+1} are always even
2. $\frac{1}{2}\left[x_{2 n+3}-13 x_{2 n+2}-20\right]$ is a perfect square
3. $3 x_{2 n+3}-39 x_{2 n+2}-60$ is a Nasty number
4. $\frac{1}{2}\left[x_{3 n+4}-13 x_{3 n+3}+3 x_{n+2}-39 x_{n+1}-96\right]$ is a cubical integer
5. $\frac{1}{2}\left(x_{4 n+5}-13 x_{4 n+4}-28\right)+\left(x_{n+2}-13 x_{n+1}-24\right)^{2}$ is a Biquadratic integer
6. $x_{n+3}=14 x_{n+2}-x_{n+1}+24$
7. $y_{n+2}=x_{n+2}+4$
8. $y_{n+3}=14 x_{n+2}-x_{n+1}+28$
9. Each of the following expressions in Table: 5 represent hyperbolas:

Table 5. (Hyperbolas)

S.no	Hyperbola	(P, Q)
1	$12 P^{2}-Q^{2}=192$	$\left(x_{n+2}-13 x_{n+1}-24,45 x_{n+1}-3 x_{n+2}+84\right)$
2	$12 P^{2}-Q^{2}=37632$	$\left(x_{n+3}-181 x_{n+1}-360,627 x_{n+1}-3 x_{n+3}+1248\right)$
3	$12 P^{2}-Q^{2}=192$	$\left(13 y_{n+3}-181 x_{n+2}-388,627 x_{n+2}-45 y_{n+3}+1344\right)$

10. Each of the following expressions in Table: 6 represent parabolas:

Table 6. (Parabolas)

S.no	Parabola	(P, Q)
1	$24 P-Q^{2}=192$	$\left(x_{2 n+3}-13 x_{2 n+2}-20,45 x_{n+1}-3 x_{n+2}+84\right)$
2	$336 P-Q^{2}=37632$	$\left(x_{2 n+4}-181 x_{2 n+2}-304,627 x_{n+1}-3 x_{n+3}+1248\right)$
3	$24 P-Q^{2}=192$	$\left(13 y_{2 n+4}-181 x_{2 n+3}-384,627 x_{n+2}-45 y_{n+3}+1344\right)$

2.3 Illustration: 3

Let $u=3$
Then, using (12) in (5), the corresponding equation under consideration is

$$
\begin{equation*}
Y^{2}=27 X^{2}+729 \tag{13}
\end{equation*}
$$

After some algebra, the corresponding solution to (1), (2) are found to be

$$
\begin{aligned}
& x_{n+1}=\frac{1}{2}\left(X_{n+1}-9\right) \\
& y_{n+1}=\frac{1}{2}\left(X_{n+1}+9\right), \quad n=-1,1,3,5, \ldots
\end{aligned}
$$

where $X_{n+1}=\frac{9}{2} f_{n}+\sqrt{27} g_{n}$
in which $f_{n}=(26+15 \sqrt{3})^{n+1}+(26-15 \sqrt{3})^{n+1}$

$$
g_{n}=(26+15 \sqrt{3})^{n+1}-(26-15 \sqrt{3})^{n+1}
$$

A few numerical examples are presented in Table:7 below

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$
Table 7. Numerical examples

n	x_{n+1}	y_{n+1}
-1	0	9
1	13095	13104
3	35394840	35394849

From the above table, we have the following observations:

1. The values of x_{n+1} and y_{n+1} are alternatively even and odd
2. $\frac{1}{1755}\left[2 x_{2 n+4}-5042 x_{2 n+2}-19170\right]$ is a perfect square
3. $\frac{4}{585}\left[x_{2 n+4}-2521 x_{2 n+2}-9585\right]$ is a Nasty number
4. $\frac{1}{1755}\left[2 x_{3 n+5}-5042 x_{3 n+3}+6 x_{n+3}-15126 x_{n+1}-90720\right]$ is a cubical integer
5. $x_{n+5}=2702 x_{n+3}-x_{n+1}+12150$
6. Each of the following expressions in Table: 8 represent hyperbolas

Table 8. (Hyperbolas)

S.no	Hyperbola	(P, Q)
1	$P^{2}-3 Q^{2}=12320100$	$\binom{2 x_{n+3}-5042 x_{n+1}-22680}{,2911 x_{n+1}-x_{n+3}+13095}$
2	$4 P^{2}-3 Q^{2}=16(2371005)^{2}$	$\binom{y_{n+5}-6811741 x_{n+1}-30652839}{,7865521 x_{n+1}-y_{n+5}+35394849}$

7. Each of the following expressions in Table: 9 represent parabolas

Table 9. (Parabolas)

S.no	Parabola	(P, Q)
1	$585 P-Q^{2}=4106700$	$\binom{2 x_{2 n+4}-5042 x_{2 n+2}-19170}{,2911 x_{n+1}-x_{n+3}+13095}$
2	$3161340 P-Q^{2}$ $=108(526890)^{2}$	$\binom{y_{2 n+6}-6811741 x_{2 n+2}-25910829}{,7865521 x_{n+1}-y_{n+5}+35394849}$

2.4 Illustration: 4

Let $u=4$
Then, using (14) in (5), the corresponding equation under consideration is

$$
\begin{equation*}
Y^{2}=48 X^{2}+4096 \tag{15}
\end{equation*}
$$

After performing a few calculations, the corresponding solution to (1), (2) are given by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{2}\left(X_{n+1}-16\right) \\
& y_{n+1}=\frac{1}{2}\left(X_{n+1}+16\right), \quad n=-1,0,1,2, \ldots
\end{aligned}
$$

where $X_{n+1}=6 f_{n}+\sqrt{48} g_{n}$
in which $f_{n}=(7+4 \sqrt{3})^{n+1}+(7-4 \sqrt{3})^{n+1}$

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$

$$
g_{n}=(7+4 \sqrt{3})^{n+1}-(7-4 \sqrt{3})^{n+1}
$$

A few numerical examples are presented in Table: 10 below
Table 10. Numerical examples

n	x_{n+1}	y_{n+1}
-1	-2	14
0	82	98
1	1246	1262
2	17458	17474

From the above table, we have the following observations:

1. The values of x_{n+1} and y_{n+1} are always even
2. $\frac{1}{84}\left[x_{2 n+4}-181 x_{2 n+2}-1272\right]$ is a perfect square
3. $\frac{1}{14}\left[x_{2 n+4}-181 x_{2 n+2}-1272\right]$ is a Nasty number
4. $\frac{1}{84}\left[x_{3 n+5}-181 x_{3 n+3}+3 x_{n+3}-543 x_{n+1}-5760\right]$ is a cubical integer
5. $14 x_{n+2}=x_{n+3}+x_{n+1}-96$
6. $y_{n+3}=x_{n+3}+16$
7. $14 y_{n+2}=x_{n+3}+x_{n+1}+128$
8. Each of the following expressions in Table: 11 represent hyperbolas:

Table 11. (Hyperbolas)

S.no	Hyperbola	(P, Q)
1	$4 P^{2}-3 Q^{2}=112896$	$\left(x_{n+3}-181 x_{n+1}-1440,209 x_{n+1}-x_{n+3}+1664\right)$
2	$4 P^{2}-3 Q^{2}=576$	$\left(13 y_{n+3}-181 x_{n+2}-1552,209 x_{n+2}-15 y_{n+3}+1792\right)$
3	$4 P^{2}-3 Q^{2}=576$	$\left(y_{n+2}-13 x_{n+1}-112,15 x_{n+1}-y_{n+2}+128\right)$

9. Each of the following expressions in Table: 12 represent parabolas:

Table 12. (Parabolas)

S.no	Parabola	(P, Q)
1	$112 P-Q^{2}=37632$	$\left(x_{2 n+4}-181 x_{2 n+2}-1272,209 x_{n+1}-x_{n+3}+1664\right)$
2	$8 P-Q^{2}=192$	$\left(13 y_{2 n+4}-181 x_{2 n+3}-1540,209 x_{n+2}-15 y_{n+3}+1792\right)$
3	$8 P-Q^{2}=192$	$\left(y_{2 n+3}-13 x_{2 n+2}-100,15 x_{n+1}-y_{n+2}+128\right)$

2.5 Illustration: 5

Let $u=5$
Then, using (16) in (5), the corresponding equation under consideration is

$$
\begin{equation*}
Y^{2}=75 X^{2}+15625 \tag{17}
\end{equation*}
$$

Following the procedure as presented above, the corresponding solution to (1), (2) are given by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{2}\left(X_{n+1}-25\right) \\
& y_{n+1}=\frac{1}{2}\left(X_{n+1}+25\right), \quad n=-1,1,3,5, \ldots .
\end{aligned}
$$

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$
where $X_{n+1}=\frac{25}{2} f_{n}+\frac{25}{\sqrt{3}} g_{n}$
in which $f_{n}=(26+15 \sqrt{3})^{n+1}+(26-15 \sqrt{3})^{n+1}$

$$
g_{n}=(26+15 \sqrt{3})^{n+1}-(26-15 \sqrt{3})^{n+1}
$$

A few numerical examples are presented in Table: 13 below
Table 13. Numerical examples

n	x_{n+1}	y_{n+1}
-1	0	25
1	36375	36400
3	98319000	98319025
5	265657935375	265657935400

From the above table, we have the following observations:

1. The values of x_{n+1} and y_{n+1} are alternatively even and odd
2. $\frac{1}{14625}\left[6 x_{2 n+4}-15126 y_{2 n+2}+218400\right]$ is a perfect square
3. $\frac{2}{4875}\left[6 x_{2 n+4}-15126 y_{2 n+2}+218400\right]$ is a Nasty number
4. $\frac{1}{14625}\left[6 x_{3 n+5}-15126 y_{3 n+3}+18 x_{n+3}-45378 y_{n+1}+756600\right]$ is a cubical integer
5. Each of the following expressions in Table: 14 represent hyperbolas

Table 14. (Hyperbolas)

S.no	Hyperbola	(P, Q)
1	$P^{2}-27 Q^{2}=855562500$	$\binom{6 x_{n+3}-15126 y_{n+1}+189150}{,2911 y_{n+1}-x_{n+3}-36400}$
2	$4 P^{2}-3 Q^{2}=16(6586125)^{2}$	$\binom{y_{n+5}-6811741 x_{n+1}-85146775}{,7865521 x_{n+1}-y_{n+5}+98319025}$

6. Each of the following expressions in Table: 15 represent parabolas

Table 15. (Parabolas)

S.no	Parabola	(P, Q)
1	$1625 P-3 Q^{2}=95062500$	$\binom{6 x_{2 n+4}-15126 y_{2 n+2}+218400}{,2911 y_{n+1}-x_{n+3}-36400}$
2	$8781500 P-Q^{2}$ $=12(4390750)^{2}$	$\binom{y_{2 n+6}-6811741 x_{2 n+2}-71974525}{,7865521 x_{n+1}-y_{n+5}+98319025}$

REFERENCES

[1] Mignotte M., Petho A., On the system of Diophantine equations $x^{2}-6 y^{2}=-5, x=a z^{2}-b$, Mathematica Scandinavica, 76(1), 50-60, (1995).
[2] Cohn JHE., The Diophantine system $x^{2}-6 y^{2}=-5, x=2 z^{2}-1$, Mathematica Scandinavica, 82(2),161164, (1998).
[3] Le MH., On the Diophantine system $x^{2}-D y^{2}=1-D, x=2 z^{2}-1$, Mathematica Scandinavica, 95(2),171-180, (2004).
[4] Anglin W.S., Simultaneous pell equations, Maths. Comp. 65, 355-359, (1996).

On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$
[5] Baker A., Davenport H., The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. Math. Oxford, 20(2), 129137, (1969).
[6] Walsh P.G., On integer solutions to $x^{2}-d y^{2}=1$ and $z^{2}-2 d y^{2}=1$, Acta Arith. 82, 69-76, (1997).
[7] Mihai C., Pairs of pell equations having atmost one common solution in positive integers, An.St.Univ.Ovidius Constanta, 15(1), 55-66, (2007).
[8] Fadwa S. Abu Muriefah and Amal Al Rashed, The simultaneous Diophantine equations $y^{2}-5 x^{2}=4$ and $z^{2}-442 x^{2}=441$, The Arabian Journal for Science and engineering, 31(2A), 207-211, (2006).
[9] Gopalan M.A., Vidhyalakshmi S., and Lakshmi K., On the system of double equations $4 x^{2}-y^{2}=z^{2}, \quad x^{2}+2 y^{2}=w^{2}$, Scholars Journal of Engineering and Technology (SJET), 2(2A), 103104, (2014).
[10] Gopalan M. A., Vidhyalakshmi S., and Janani R., On the system of double Diophantine equations $a_{0}+a_{1}=q^{2}, \quad a_{0} a_{1} \pm 2\left(a_{0}+a_{1}\right)=p^{2}-4$, Transactions on Mathematics ${ }^{\mathrm{TM}}, 2(1), 22-26$, (2016).
[11] Gopalan M.A., Vidhyalakshmi S., and Nivetha A., On the system of double Diophantine equations $a_{0}+a_{1}=q^{2}, \quad a_{0} a_{1} \pm 6\left(a_{0}+a_{1}\right)=p^{2}-36$, Transactions on Mathematics ${ }^{\text {TM }}, 2(1), 41-45$, (2016).
[12] Gopalan M. A., Vidhyalakshmi S., and Bhuvaneswari E., On the system of double Diophantine equations $a_{0}+a_{1}=q^{2}, \quad a_{0} a_{1} \pm 4\left(a_{0}+a_{1}\right)=p^{2}-16$, Jamal Academic Research Journal, Special Issue, 279-282, (2016).
[13] Meena K., Vidhyalakshmi S., and Priyadharsini C., On the system of double Diophantine equations $a_{0}+a_{1}=q^{2}, \quad a_{0} a_{1} \pm 5\left(a_{0}+a_{1}\right)=p^{2}-25$, Open Journal of Applied \& Theoretical Mathematics (OJATM), 2(1), 08-12, (2016).
[14] Gopalan M.A., Vidhyalakshmi S., and Rukmani A., On the system of double Diophantine equations $a_{0}-a_{1}=q^{2}, \quad a_{0} a_{1} \pm\left(a_{0}-a_{1}\right)=p^{2}+1$, Transactions on Mathematics ${ }^{\mathrm{TM}}, 2(3), 28-32$, (2016).
[15] Devibala S., Vidhyalakshmi S., Dhanalakshmi G., On the system of double equations $N_{1}-N_{2}=4 k+2(k \succ 0), \quad N_{1} N_{2}=(2 k+1) \alpha^{2}$, International Journal of Engineering and Applied Sciences (IJEAS), 4(6), 44-45, (2017).

AUTHORS' BIOGRAPHY

Dr. S. Vidhyalakshmi is currently Professor of Mathematics and Principal at Shrimati Indira Gandhi College, Tiruchirappalli. She has taught Mathematics for nearly two decades. Her research interest is solving Diophantine equations.

Dr. M.A. Gopalan is currently Professor of Mathematics at Shrimati Indira Gandhi College, Tiruchirappalli and has taught Mathematics for nearly two decades. He is interested in problem solving in the area of Diophantine equations and Number patterns. He serves on the editorial boards of IJPMS and IJAR and a life member of Kerala Mathematics Association.
S. Aarthy Thangam is research scholar in department of Mathematics at Shrimati Indira Gandhi College, Tiruchirappalli. Her area of interest is solving Diophantine equations in various disciplines. She has published 18 papers in National and International journals.

Citation: S.Vidhyalakshmi et al., " On the Pair of Diophantine Equations $y-x=u^{2}, y^{3}-x^{3}=v^{2}$ ", International Journal of Scientific and Innovative Mathematical Research, vol. 5, no. 8, p. 27-34, 2017., http://dx.doi.org/10.20431/2347-3142.0508004

Copyright: © 2017 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

