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1. INTRODUCTION 

Γ- semigroup was introduced by Sen and Saha [8] as a generalization of semigroup. Anjaneyulu. A 

[1], [2] and [3] initiated the study of pseudo symmetric ideals, radicals and semi pseudo symmetric 

ideals  in semigroups. Giri and Wazalwar [4] intiated the study of prime radicals in semigroups. 

Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [5], [6] initiated the study of prime Γ-radicals 

and primary and semiprimary Γ-ideals in Γ-semigroups. In this paper we characterize the 

 Γ-semigroups containing 0 and identity in which non zero primary Γ-ideals are prime and maximal 

and also we study the Γ-semigroups  in which primary Γ- ideals are prime.   

2. PRELIMINARIES 

DEFINITION 2.1: Let S and Γ be any two non-empty sets. Then S is said to be a Γ-semigroup if 

there exist a mapping from S  S to  S which maps (a, 𝛾,b)  a 𝛾 b satisfying the condition : 

(a𝛼b)𝛽c = a𝛼(b𝛽c) for all  a, b, c ∈  S and 𝛼,𝛽, 𝛾 ∈  Γ. 

NOTE 2.2: Let S be a Γ-semigroup.  If A and B are two subsets of  S, we shall denote the set { a𝛾b : 

a ∈  A , b ∈  B and 𝛾 ∈  Γ } by AΓB. 

DEFINITION 2.3: A Γ-semigroup S is said to be commutative Γ-semigroup provided aγb = bγa for 

all a, b ∈  S and γ ∈  Γ. 

NOTE 2.4 : If  S  is a commutative Γ-semigroup then a Γb = b Γa for all a, b ∈  S. 

Abstract: In this paper, the terms, Maximal Γ- ideal, Primary Γ-semigroup, prime Γ-ideal and simple  

Γ-semigroup are introduced.  It is proved that if S is a Γ-semigroup containing 0 and identity with the 

maximal Γ-ideal M.  Then every non zero primary  Γ-ideal is prime as well as maximal if and only if S∖M is a 

0-simple Γ-semigroup with either 1) M = (S∖M) ΓaΓ (S∖M) ∪ {0}, a ∈  M and <a> Γ <a> = 0 or 2) M is a 0-

simple Γ-semigroup.  Also it is proved that if S is a duo Γ-semigroup containing 0  and identity with the 

maximal Γ-ideal M.  Then every non zero primary Γ-ideal is prime as well as maximal if and only if S is one 

of the following types 1) S = G ∪ M where G is the Γ-group of units and M = {aγg : g ∈  G, aγa = 0, a ∈  M,  

γ ∈  Γ } ∪  {0}.  2) S is the union of two Γ-semigroups with 0-adjoined. Also it is proved that if S is a 

commutative  Γ-semigroup with 0 and identity and with the maximal Γ-ideal M.  Suppose that every non zero 

primary Γ-ideal is prime or every nonzero  Γ-ideal is prime. Then S satisfies either one of the following 

conditions 1) S = G∪M, where G is the Γ-group of units in S and M = (a ΓG) ∪ {0}, a ∈  M and a Γa = 0  

2) (MΓ)
n-1 

M = M for every positive integer n. Furthermore if S has maximum condition on Γ-ideals then for 

every m ∈  M, we have m ∈   M Γe, e being a proper idempotent and also proved that if S is a quasi 

commutative Noertherian Γ-semigroup containing identity. Suppose every primary Γ-ideal  in S is prime.  

Then the following are equivalent 1) S is cancellative. 2) S has no proper Γ-idempotents.  3) S is a Γ-group.   
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NOTE 2.5: Let S be a Γ-semigroup and a, b ∈  S and α ∈  Γ. Then aαaαb is denoted by (aα)
2
b and 

consequently  a α a α a α…..(n terms)b is denoted by (aα)
n
b.  

DEFINITION 2.6: A Γ-semigroup S is said to be quasi commutative provided for each a, b ∈  S, 

there exists a natural number n such that ( )  na b b a     . 

NOTE 2.7: If a Γ-semigroup S is quasi commutative then for each a, b ∈  S , there exists a natural 

number n such that aΓb = (b Γ)
n
a. 

DEFINITION 2.8: An element a of a Γ- semigroup S is said to be a left identity of S provided  

a∝s  = s for  all s ∈  S and ∝ ∈  Γ. 

DEFINITION 2.9: An element a of a Γ-semigroup S is said to be aright identity of S provided  

s∝a = s for  all s ∈  S and ∝ ∈  Γ. 

DEFINITION 2.10: An element a of a Γ- semigroup S is said to be a two sided  identity or an 

identity provided it is both a left identity and a right identity of  S. 

NOTATION2.11:  Let S be a Γ- semigroup.  If S has an identity , let S
1
 = S and if S does not have an 

identity, let S
1
 be the Γ- semigroup S with identity adjoined, usually denoted by the symbol 1.  

DEFINITION 2.12:  An element a  of a Γ- semigroup S is said to be  a left zero of S provided  aΓs = a 

for all s belongs S. 

DEFINITION 2.13:  An element a of a Γ- semigroup S is said to be  a right zero of S provided   

sΓa = a for all s belongs S.  

DEFINITION 2.14:  An element a  of a Γ- semigroup S is said to be  a zero of S provided  it is both 

left and right zero of S. 

NOTATION2.15:  Let S be a Γ- semigroup.  If S has a zero, let S
0
 = S and if S does not have a zero, let 

S
0
 be the  Γ- semigroup S with zero adjoined, usually denoted by the symbol 0. 

DEFINITION2.16: A non empty subset A of a Γ-semigroup S is said to be a left Γ-ideal of S if 

, ,s S a A    implies s a A  . 

NOTE2.17: A non empty subset A of a Γ-semigroup S is a leftΓ-ideal of S iff S Γ A ⊆ A. 

DEFINITION2.18: A non empty subset A of a Γ-semigroupS is said to be a right Γ-ideal of S if 

, ,s S a A    implies a s A  . 

NOTE 2.19: A non empty subset A of a Γ-semigroup S is a right Γ-ideal of S iff AΓS ⊆ A. 

DEFINITION 2.20: A non empty subset A of a Γ-semigroup S is said to be a two sided Γ-ideal or 

simply a Γ- ideal of S if s ∈  S, a ∈  A, 𝛼 ∈  Γ imply s𝛼a ∈  A, a𝛼s ∈  A. 

DEFINITION 2.21: A Γ-ideal A of a Γ-semigroup S is said to be a maximal 𝚪-ideal provided A is a 

proper Γ-ideal of S and is not properly contained in any proper Γ-ideal of S.  

DEFINITION 2.22: A  Γ- ideal P of a Γ-semigroup S is said to be a prime Γ- ideal provided  A, B 

are two Γ-ideals of S and AΓB ⊆ P ⇒ either A ⊆ P or B ⊆ P. 

DEFINITION 2.23: A Γ-ideal A of a Γ-semigroup S is said to be a semiprime Γ- ideal  provided   

x ∈  S,  xΓS
1
Γx ⊆ A  implies x ∈ A . 

DEFINITION 2.24: If A is a Γ-ideal of a Γ-semigroup S, then the intersection of all prime Γ-ideals 

of S containing A is called prime Γ-radical or simply Γ-radical of A and it is denoted by √A or  

rad A. 

THEOREM 2.25 [5]: If A is a 𝚪-ideal of a 𝚪-semigroup S then √A is a semiprime 𝚪-ideal of S. 

THEOREM 2.26 [5]: A Γ- ideal Q of Γ-semigroup S is a semiprime Γ- ideal of S iff √(Q) = Q  

implies   x ΓS
1
Γy ⊆ A. 

DEFINITION 2.27: An  element a of a Γ- semigroup S is said to be left cancellative provided  

a Γx =  a Γy for all  x, y ∈  S implies x = y.  
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DEFINITION 2.28:  An element a of a Γ- semigroup S is said to be right cancellative provided  

x Γa =  y Γa for all x, y ∈  S implies x = y. 

DEFINITOIN 2.29: An  element a of a Γ- semigroup S is said to be cancellative provided it is both 

left and right cancellative element.  

DEFINITION 2.30: A Γ-ideal A of a Γ-semigroup S is said to be a left primary Γ-ideal provided 

1) If X, Y are two Γ-ideals of S such that X ΓY  ⊆ A and Y ⊈ A then X ⊆ √A.  

2)  √A is a prime Γ-ideal of S. 

DEFINITION 2.31:  A Γ-ideal A of a Γ-semigroup S is said to be a right primary Γ-ideal provided 

1) If  X, Y are two Γ-ideals of S such that X Γ Y ⊆ A and X ⊈ A then Y ⊆ √A.  

2)  √A is a prime Γ-ideal of S. 

EXAMPLE 2.32: Let  S = {a, b, c} and Γ = {x, y, z}. Define a binary operation . in S as shown  in 

the following table. 

. a b c 

a a a a 

b a a a 

c a b c 

Define a maping S XΓ X S → S by a α b = ab, for all a, b ∈  S and α ∈  Γ.  It is easy to see that S is a 

Γ-semigroup.  Now consider the Γ-ideal <a> = S
1
 Γa ΓS

1
 = {a}. Let p Γq ⊆ <a>, p ∉ <a>  

⇒ q ∈  √<a> ⇒ (q Γ)
n-1

q ⊆ <s> for some n ∈  N. Since b Γc ⊆ <a>, c ∉ <a> ⇒ b ∈  <a>. Therefore 

<a> is left primary. If  b ∉ <a> then (c Γ)
 n-1 

c  ∉ <a> for any n ∈  N ⇒ c ∉ √<a>.  Therefore <a> is 

not right primary. 

DEFINITION 2.33: A Γ-ideal A of  a Γ- semigroup S is said to be a primary Γ-ideal provided A  is 

both  left primary  Γ-ideal and right primary Γ-ideal.  

DEFINITION 2.34: A Γ-ideal A of a Γ- semigroup S is said to be a principal Γ-ideal provided A is 

a Γ-ideal generated by a single element a. It is denoted by J[a] = <a>.  

DEFINITION 2.35: An element a of a Γ-semigroup S with 1 is said to be left invertible or left unit 

provided there is an element b ∈  S such that bΓa = 1. 

DEFINITION 2.36: An element a of a Γ-semigroup S with 1 is said to be right invertible or right 

unit provided there is an element b ∈  S such that a Γb = 1. 

DEFINITION 2.37: An element a of a Γ-semigroup S is said to be invertible or a Unit in S provided 

it is both left and right invertible element in S. 

DEFINITOIN 2.38: A Γ- semigroup S is said to be a simple Γ- semigroup provided S has no proper 

 Γ- ideals. 

DEFINITION 2.39: An  element  a of a Γ- semigroup S is said to be a Γ-idempotent provided  

a α a = a for all α ∈  Γ. 

NOTE 2.40: If an element a of a Γ- semigroup S is a  Γ-idempotent, then a Γa = a. 

 DEFINITION 2.41: A Γ- semigroup S is said to be an idempotent Γ- semigroup  or a band provided 

every element in S is a Γ-idempotent. 

DEFINITION 2.42: A Γ- semigroup S is said to be a globally idempotent Γ- semigroup provided  

S ΓS = S.   

DEFINITION 2.43: A Γ- semigroup S is said to be a left duo Γ- semigroup provided every left   

Γ- ideal of S is a two sided Γ- ideal of S. 

DEFINITION 2.44: A Γ-semigroup S is said to be a right duo Γ- semigroup provided every  right  

Γ- ideal of S is a two sided Γ- ideal of S. 

DEFINITION 2.45: A Γ- semigroup S is said to be a duo Γ- semigroup provided it is both a left duo 

Γ- semigroup and a right duo Γ- semigroup. 
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DEFINITOIN 2.46: An  element  a of a Γ-semigroup S is said to be regular provided a = a α x βa 

for some  x ∈  S, α, β ∈  Γ. i.e, a ∈  a ΓS Γa. 

DEFINITION 2.47: A Γ- semigroup S is said to be a regular Γ- semigroup provided every element  

is regular. 

DEFINITION 2.48: An element a of a Γ-semigroup S is said to be left regular provided a =  aαaβx, 

for some  x ∈  S, α, β ∈  Γ. i.e, a ∈  a Γa ΓS. 

DEFINITION 2.49: An element a of a Γ- semigroup S is said to be right regular provided  

a = xαaβa, for some  x ∈  S, α, β ∈  Γ. i.e, a ∈  S Γa Γa. 

DEFINITION 2.50: An element a of a Γ- semigroup S is said to be completely regular provided 

there exists an element x ∈  S such that a = aαxβ a for some α, β ∈  Γ and aαx  =  xβa, for all  α, β ∈  

Γ. i.e, a ∈  aΓx Γa and aΓx = x Γa.  

DEFINITION2.51: A Γ-semigroup S is said to be a completely regular Γ- Semigroup provided 

every element  is  completely regular.  

DEFINITION 2.52: An element a of a Γ-semigroup S is said to be intra  regular provided  

a = xαaβa γy  for some  x, y ∈  S and α, β, γ ∈  Γ. 

DEFINITION 2.53: An element a of a Γ- semigroup S is said to be semisimple provided  

a ∈  <a> Γ <a>, that is, <a> Γ <a> = <a>. 

DEFINITION 2.54: A Γ-semigroup S is said to be semisimple Γ- semigroup provided every element 

is a semisimple. 

DEFINITION 2.55:  A Γ-semigroup S is said to be a Noetherian Γ-semigroup provided   every 

ascending chain of  Γ-ideals becomes stationary. 

THEOREM 2.56 [6]: Let S be a Γ-semigroup with identity and let M be the unique maximal  

Γ-ideal of S.  If √A = M for some Γ-ideal of S.  Then A is a primary Γ-ideal. 

THEOREM 2.57 [6]: If S is a duo  Γ-semigroup, then the  following     are equivalent for any 

element a ∈  S. 

1) a is completely regular. 

2) a is regular. 

3) a is left regular. 

4) a is right regular. 

5)   a is intra regular. 

6)   a is semisimple . 

THEOREM 2.58: Let S be a  Γ- semigroup with identity. If ( non zero, assume this if S has zero)  

proper prime Γ-ideals in S are maximal then S is primary Γ-semigroup. 

Proof:  Since S contains identity,  S has a  unique maximal Γ- ideal M, which is the union of all 

proper Γ- ideals in S. If A is a (non zero) proper Γ-ideal in S then √A = M and hence by theorem 2.56, 

A is primary Γ- ideal.  If S has zero and if <0> is a prime Γ-ideal, then <0> is primary and hence S is 

primary.  If <0> is not a prime Γ-ideal, then √<0> = M and hence by theorem 2.56, <0> is a primary 

Γ- ideal.  Therefore S is a primary Γ- semigroup. 

DEFINITION 2.59 :  A Γ-semigroup S is said to be a Γ-group provided S has no left and right  

Γ-ideals. 

3. PRIMARY  Γ-IDEALS ARE PRIME AND MAXIMAL  

THEOREM 3.1: Let S be a Γ-semigroup containing 0 and identity with the maximal Γ-ideal M. 

Then every nonzero primary Γ-ideal is prime as well as  maximal if and only if S∖M is a  

0-simple Γ-semigroup with either 

1) M  = (S∖M) Γ a Γ(S∖M) ∪ {0},  a ∈  M and <a> Γ<a> = 0  

or 
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2)        M is a 0-simple Γ-semigroup.  

Proof: Suppose every nonzero primary Γ-ideal is prime and maximal. Since     nonzero     prime  

Γ-ideals are maximal, by theorem 2.58, S is a primary Γ-semigroup. If  <0>  is the maximal Γ-ideal in 

S, then the proof of this theorem is trivial.  

Suppose S has nonzero maximal Γ-ideal M. Since S is a primary Γ-semigroup and every non 

zero  primary  Γ-ideal is maximal, we have M is the only nonzero proper Γ-ideal in S. Since M is a 

maximal Γ-ideal, S∖M is a  0-simple Γ-semigroup. Now for every nonzero  a ∈  M,  <a> = M. Since 

M ΓM is a Γ-ideal contained in M, either M ΓM = 0 or M ΓM = M. If  M ΓM = 0 then for all 

 a, b ∈  M, <a>Γ<b> = 0 and  <a>Γ<a> = 0 for all a ∈  M. Since for all nonzero elements a, b ∈  M, 

<a> = <b> = M. We have b ∈  gΓaΓh for some g, h ∈  S. If g or h ∈  M then by the above b = 0, this 

is a contradiction. So g, h ∈  S∖M. Therefore M = (S∖M)ΓaΓ(S∖M) ∪{0}, a ∈  M and <a>Γ<a> = 0. 

If  MΓM = M then for every non zero a ∈  M. We have M ΓaΓM = MΓSΓaΓSΓM = MΓMΓM = M. 

Therefore M is a 0-simple Γ-semigroup.  

Conversly if S∖M is a 0-simple Γ-semigroup with either M = (S∖M) Γa Γ(S∖M)  such that  

a ∈  M and  <a>Γ<a> = 0 or M is a  0-simple Γ-semigroup, then clearly either M = <0> and S has no 

other Γ-ideals  or M is the only nonzero Γ-ideal in S. 

Case      1) : Suppose M = <0> implies S∖M is a 0-simple implies <a> is a maximal  Γ-ideal of S. 

                      Therefore S has  no  other nonzero Γ-ideals. 

Case     2)  : Suppose A is any nonzero proper Γ-ideal and A ⊆M. Let a ∈  A implies a ∈  M. Let 

 a ≠ 0, a ∈  M     implies  <a> ⊆ M.  M = (S∖M) Γa Γ (S∖M) ⊆ S Γa Γ S ⊆   <a>.  Therefore M ⊆ 
<a> and clearly     <a> ⊆  M. Therefore M =  <a>. Therefore M is the  only nonzero Γ-ideal in S. 

 NOTE 3.2: If S does not contain 0, then the case M ΓM = 0 in the above proof does not arise. 

THEOREM 3.3:Let S be a Γ-semigroup containing identity and not containing 0. Then every 

primary Γ-ideal is prime as well as maximal if and only if S is either  a simple Γ-semigroup or a 

0-simple extension of a simple Γ-semigroup. 

 Proof: The proof can write by  using theorem 3.1. 

THEOREM 3.4:  Let S be a duo  Γ-semigroup containing 0 and identity with the maximal  

Γ-ideal M. Then every nonzero primary Γ-ideal is prime as well as maximal if and only if S is 

one of the following types.   

1) S = G∪M where G is the Γ-group of units and M = { aγg : g ∈  G,  aγa = 0, a ∈  M , γ ∈  Γ} ∪  

{0} . 

 2)    S is the union of two Γ-groups with 0 adjoined. 

Proof:  Since S is a duo  Γ-semigroup, we have S∖M is a Γ-group consists of all units in S and the 

sets  (S∖M) Γa Γ (S∖M) ∪  {0} with  a ∈  M and  < a>Γ<a> = 0 and  a Γ(S∖M) ∪  {0} with a ∈  M 

and aΓa = 0 are equal.  Also if M is 0-simple, then M is a Γ-group with 0 adjoined. Thus by theorem  

3.1, the proof of  this theorem is trivial. 

NOTE 3.5 :  Every commutative  Γ-semigroup is a duo Γ-semigroup. 

THEOREM 3.6:  Let S be a  duo  Γ-semigroup containing  identity and not containing 0. Then 

every primary Γ-ideal is prime and  maximal if and only if S is either a Γ-group or a union of 

two Γ-groups. 

Proof: The proof of this theorem is an immediate consequence of theorem 3.4. 

THEOREM 3.7:  Let S be a Γ-semigroup containing 0 and identity with the maximal Γ-ideal M. 

Suppose that every nonzero primary Γ-ideal is prime. Then S∖M is a 0-simple Γ-semigroup 

such that either  

1) M = (S∖M) ΓaΓ (S∖M) ∪ {0}, a ∈  M and < a>Γ<a> = 0   

              or  

2) (Mγ)
n-1

 M = M for every natural number n. 
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Proof :  Suppose every nonzero primary Γ-ideal is prime. If MΓM = 0 then M is the unique prime  

Γ-ideal in S. Now √<a> = M  for any nonzero a ∈  M and thus <a> is primary by theorem 2.56, MΓM 

is a primary Γ-ideal and hence  MΓM is a prime Γ-ideal by hypothesis. Thus M = MΓM and hence  

M = (Mγ)
 n-1

 M for every natural number n. 

THEOREM 3.8: Let S be a Γ-semigroup containing identity and not containing 0 in which 

primary Γ-ideals are prime. Then S is a 0-simple Γ-semigroup extention of a globally 

idempotent  Γ-semigroup.  

Proof: The proof of this theorem is a direct consequence of theorem 3.7. 

THEOREM 3.9:  Let S be a   duo  Γ-semigroup containing 0 and identity  with the maximal  

Γ-ideal M. If  every nonzero primary Γ-ideal is prime, then S satisfies either one of the following 

conditions. 

1) S = G∪  M where G is the Γ-group of units in S and M = a ΓG∪  {0}, a ∈  M and aΓa = 0.  

2) (MΓ)
n-1

 M = M for every natural number n. Furthermore if S is Noetherian and quasi 

commutative, then for every a ∈  M, we have a ∈  aΓe, e being proper idempotent in S.  

Proof: By theorem 3.7, if every nonzero primary Γ-ideal is prime, then either 1)S = G∪M, where G is 

the Γ- group of units in S and M = (aΓG) ∪  {0}, a ∈  M and aΓa = 0,   2) (MΓ)
n-1

M = M for every 

natural number n. Suppose S is a Noetherian quasi commutative Γ-semigroup with MΓM = M. Since 

MΓM = M, every x ∈  M is of the form aΓb where a, b ∈  M. Suppose there exists  a nonzero element  

a ∈  M such that a cannot be a product of itself and some element  in M, that is, let a ∈  b1Γa1 where 

 a1, b1 ∈  M and ≠ a. Then a1 ∈  b2 Γa2 where b2, a2 ∈  M and ≠ a1.Since otherwise a1 ∈  a1 Γa2 implies  

a ∈  b1Γa1Γa2  and so a ∈  aΓa2  this is a contradiction. Proceeding in this manner, we have a2 ∈  b3Γa3,  

. . .  ,ak ∈  bk+1Γak+1, . . . .Thus we obtain a strictly ascending chain of  Γ-ideals <a1> ⊂<a2> ⊂ . . .    

Then since S is Noetherian, this chain terminates and hence we have an ∈  bn+1Γan+1 where  

an+1 ∈  sΓan . This implies an ∈  bn+1ΓsΓ an, this is a contradiction. Therefore there does not exist a 

nonzero a ∈  M such that a cannot be a product of itself and some element in M. We claim that for 

every nonzero a ∈  M,  a ∈  aΓe, e = eΓe ∈  M. Let us assume the contrary, that is, suppose that there 

exists a ∈  M such that a is not a product of a  Γ- idempotent and itself. So a ∈  a Γb1 where b1 is not a 

Γ- idempotent. Clearly <a> ≠ <b1>. Since otherwise  b1 ∈  aΓt and so a ∈  ( aΓa) Γt  which implies by 

theorem 2.57, a is regular and hence a is a product of a Γ- idempotent and itself, which is a 

contradiction. So <a> ⊂ <b1>. Proceeding in this manner we have b1 ∈  b1Γb2, b2 ∈  b2Γb3, ,………………… . 

Thus we have  a strictly ascending chain of Γ-ideals  < a1> ⊂ <b1>. ⊂…… . Since S is Noetherian, 

 Γ-semigroup,  this chain terminates and hence <bn> = <bn+1> =……….. for some natural number n.  

Now  we have bn is a product of an idempotent and itself, this is a contradiction. Therefore  

a ∈  a Γe, e ∈  e Γe, e ∈  M.  

THEOREM 3.10: Let S be a commutative  Γ-semigroup with  0 and identity and   with the 

maximal Γ-ideal M. Suppose that every nonzero primary  Γ-ideal is prime or every non zero  

Γ-ideal is prime.  Then S satisfies either one of the following conditions. 

1) S = G∪  M, where G is the Γ-group of units in S and M = (a ΓG) ∪  {0}, a ∈  M and   a Γa = 0. 

2)  (M Γ)
n-1

M = M for every positive integer n. Furthermore if S has maximum condition on  

Γ-ideals then for  every m ∈  M, we  have m ∈  M Γe, e being a proper idempotent. 

Proof: The proof of this theorem is an immediate consequence of theorem 3.9. 

THEOREM 3.11: Let S be a quasi commutative Noetherian  Γ-semigroup containing identity. 

Suppose every primary Γ-ideal in S is prime. Then the following are equivalent. 

1) S is cancellative. 

2) S has no proper Γ- idempotents. 

3) S is a  Γ-group. 

Proof: 3) implies 1) is clear. Let e be a Γ-idempotent in S. Let a ∈  S. Now  aγe = aγeγe implies  

a = aγef or γ ∈  Γ. This is true for all a ∈  S, γ ∈  Γ. Similarly e γa = a. Therefore e is the identity in S. 

Therefore S has no proper idempotents. Therefore 1) implies 2). Assume 2).  If S is not a  Γ-group, 



Γ-Semigroups in which Primary Γ- Ideals are Prime and Maximal 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 42 

then S has a unique maximal Γ-ideal M and hence theorem 3.9, for every a ∈  M,  a = a Γe for some 

proper  idempotent e. This is a contradiction. Therefore 2)  implies 3). 

THEOREM 3.12: Let S be a quasi commutative Γ-semigroup with 0 and with out  identity in 

which every nonzero  Γ-ideal is prime. If S is Noetherian, then every element x in S of the form  

x =  x Γt,  t ∈  S or  x Γx = (x Γx)Γe where e is an idempotent.   Furthermore, if S  is cancellative, 

then every x ∈  S  is of the form x =  x Γt, t ∈  S. 

Proof:  If S has no proper nonzero Γ-ideals, then for any nonzero x ∈  S, x ΓS = S. Thus  

x =  x Γt, t ∈  S, γ ∈  Γ. If S has no proper Γ-ideals, then S is Noetherian, S contains maximal Γ-ideals. 

Suppose there exists a maximal Γ-ideal M such that MΓM = 0. Then for any prime Γ-ideal P, we have 

MΓM ⊆ P and hence M = P. So M is a unique nonzero Γ-ideal in S. Then 0 ≠ x∈  M implies  

x ΓS = M. Hence x = x Γt for some t ∈  S. If x ∉ M, then since M is prime  x Γx ⊈ M. So  x ΓS = S. 

Thus x ∈  x Γt for some t ∈  S. Now assume that MΓM ≠ 0 for any maximal Γ-ideal M. Let  x ∈  S. 

Then since S is Noetherian  xΓS contained in maximal Γ-ideal, say M. 

 Since MΓM ≠ 0, MΓM is prime and hence MΓM = M. Then it can be easily verified as in the proof 

of the theorem 3.9, that  x Γx = x Γx Γe where e is a  Γ- idempotent. Clearly if S  is cancellative, then x 

∈  x Γt  for some t ∈  S.  

Conclusion: It is proved that if S is a quasi commutative Γ-semigroup with 0 and without identity in 

which every no-zero Γ-ideal is prime.  If S is Noertherian, then every element x in S of the form x = x 

Γt,  t ∈  S or x Γx = (x Γx) Γe where e is an idempotent.  Furthermore, if S is cancellative, then every 

x ∈  S is of the form x = xΓt, t ∈  S.  
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