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1. INTRODUCTION 

Here H will be a locally compact abelian (LCA) group. The group H with discrete topology is denoted 

by H d .This is same as giving H the topology induced from declaring the subgroup G = {0}  H to be 

open. The space of finite regular Borel measures on H is denoted M (H). For μ  M (H), let μ d 

denote discrete part of μ. The ring homomorphism μ → μ d   maps M (H) onto M (H d ), and this map 

is norm-non increasing in the measure norm; that is, ,μ  M (H). For μ  M (H) we let μ 

denote Fourier-Modified-Stieltjes transform of μ; that is   

where γ∈H (dual of H). In the papers [3],[4] C. Dunkl and D. Ramirez showed (in more general 

setting)  

(Where denotes the sup-norm) This further implies that  

ℳ (Ĥ) = ℳ c (Ĥ) ⊕ ℳ d (Ĥ) , where ℳ (Ĥ), ℳ c (Ĥ) and ℳ d (Ĥ) are sup-norm closures on Ĥ of 

the Fourier-Modified-Stieltjes transform of measures from M(H), M c (H) ( the space of continuous 

measures) and M d (H) respectively. Let ∆ denote maximal ideal space of M (H) and let κ Ĥ denote ∆ 

closure of Ĥ in ∆ (Recall Ĥ ∆ under the identification map from Ĥ to ∆ by , 

, we call the set κ Ĥ \ Ĥ the fringe of Ĥ. The result (μ M(H)) implies 

that the fringe of Ĥ contains homomorphic  copy of Bhor group βĤ of Ĥ ( under the map χ→πx from 

 βĤ to ∆ given by , μ M(G), χ β(Ĥ).  

The setting of this paper is as follows. We let H be an LCA group with topology τ H  and G be 

a subgroup of H which has an LCA group topology τ G  such that injection (G, τ G  ) → (H, τ H )  is 

continuous. For example G is the image under a continuous monomorphism of an LCA group. We let 
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HG denote H with the topology induced by declaring the subgroup G with the τ G topology to be open. 

We will assume that G is a nonopen subgroup of H so that H ≠ Hg   topologically. 

We now define the natural Projection P:M(H)→ M(HG) by utilizing a Raikov system of 

subsets of H.(For basic facts connecting Raikov System see [6]). We choose F to be Raikov system 

generated by the family of compact subsets of G. Let R be the set of measures  μ ϵ M(H) such that 

│μ│ is connected on some element of F and let I be the set of measures  μ ϵ M(H) such that |μ | (A) = 

0 for all   A ϵ F. Then I is closed ideal in M (H) and R is the closed subalgebra of M(H). Further-more 

M(H) = R ⊕ I (see for example, [6,P151]).Now R can be identified with M(HG ) and thus the natural 

projection P:M(H)→ M(HG) is induced by the given direct sum. For μ ϵ M (H) we write μ = μ G + μ I 

where μ G M (H) an μ I I. Thus P μ = μ G , μ ϵ M(H)    Observe that P is norm-bounded projection; 

that is , |P μ | ≤ │μ│, μ ϵ M(H) .Our goal now is to show ,  μ ϵ M(H) 

Let υ: H G → H be the identity map and φ :Ĥ→ĤG the adjoint map (an injection). In paper [5] 

C. Dunkl and D. Ramirez showed that for any continuous homomorphism π: G1 → G2 (G1, G2 LCA 

groups) that π is open if and only if π: G1 → G2 (the adjoint map) is proper (the inverse image of a 

compact set compact) . Thus since υ is not open, φ is not proper. The map υ induces continuous 

homomorphism φ*  : M (H G) → M (H). Since υ is one-to- one, φĤ is dense in Ĥ G . Indeed for any 

K⊂ Ĥ, φ (Ĥ\K) is dense in ĤG. For μ ϵ M (H),  is the supremum of │μ│ over either φĤ or Ĥ G. For an 

LCA group L, we let P (L) denote space of continuous definite functions on L; we let Pc (L) be that f 

∈P (L) with compact support. We will denote the Haar measure on HG by λ . (The measure λ 

restricted to G is Haar measure on G) 

2. DEFINITIONS 

2.1. Fourier-Modified-Stieltjes Transform:  Fourier –Modified – Stieltjes transform of complex 

valued smooth function (t, x) is defined by the convergent integral  

                                                   F(s, y) = FTp+1 {f (t, x)} =           

2.2. Raikov System of Subsets: Let F denotes a family of σ – compact subsets of H such that          (i) 

if A ϵ F, B is σ – compact and B ⊂A then B ∊ F (ii) if ⊂ F then ∊ F (iii) A, B ∊ F then 

A+B ϵ F and (iv) A ϵ F and x ϵ H, then x + A ϵ F such a family of subsets of H is called Raikov 

System. 

2. 3.   Positive Definite Function: A function υ defined on G is said to be positive definite if the 

inequality υ (x n – x m) ≥ 0 holds for every choice of x 1, x2, --------, x N in G for every 

choice of complex numbers c1,c2,----------,c N . 

3. MAIN RESULTS 

Mainly, the results of this section are from [1] 

3.1. Proposition 1: Let f ∊ Pc (H G) and let d μ =f d λ . If g ∊Pc (H) the g * μ (convolution in M (H)) is 

in Pc (H) 

Proof: - Since f ∊ Pc (H G), by inversion theorem [7, p.22], and by Bocher’s 

theorem [7, p. 19]. Thus γ ∊ Ĥ ⊂ Ĥ G,  

 

Since g and μ have compact supports, g * μ is continuous function on H with compact support. Finally 

g * μ is positive definite since on H □ 
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An LCA group L is amenable, and thus satisfies the condition of Godement: the constant function 1 

can be approximated uniformly on compact subsets of L by functions of form , where K is a 

continuous function with compact support and (see [6, p.168, 172]). Thus 

we have 

3.2. Proposition 2: Let L be an LCA group and K⊂L a compact subset of L. Given ε > 0, there is 

        p ∊ P c (L) such that p (0) = 1 and │p - 1│< ε on K. 

3.3. Proposition 3: Let K be compact subset of H G , and let U be a relatively compact neighborhood 

of 0 in HG . Then there is a neighborhood of V of 0 in H such that (x + V) ∩ K⊂ x + U for all x ∊ K. 

Proof: - Since K is compact in H G , K-K is also compact in H G ; and the inducted topology on K-K 

    ( since compact topologies are minimal Hausdorff ) . Thus there is an H-open neighborhood of 0, 

V, such that V ∩ (K – K) ⊂ U ∩ (K- K). Thus for x ∊ K,  

(x + V) ∩ K ⊂ x + (V ∩ (K – {x})) ⊂ x + (V ∩ (K – K)) ⊂ x + (U ∩ (K – K)) ⊂ x + U.  

3.4. Proposition 4: Let ξ ∊ Ĥ G, K a compact subset of H G , ε > 0 be given. Then there exists γ ∊ Ĥ 

such that │γ - ξ│< ε on K. 

Proof: - Recall that φĤ can be identified with Ĥ , and it is dense in Ĥ G .Finally the topology in Ĥ G is 

the compact –open topology .  

3.5. Theorem:- Let P ; M(H) → M(HG ) , Then , . 

Proof: - Let μ ≠ 0 be in M (H), and let ξ ∊ Ĥ G. We write μ = μ G + μ I where μ G ϵ M (H G) and μ I ∊ I 

using the Raikov System. We will show that . 

We may assume that spt μ G (spt denote the support) is compact in H G . By Proposition 2, there is 

p∈Pc(HG ) such that p(0) =1 and on spt μG. 

Since (spt p) = 0, we assume that spt μ I ∩ sptp = υ. Since p is uniformly continuous in the H G 

topology, there is a HG - open neighborhood of 0, U, such that for x ϵ HG and y ∊ U,    

│p(x + y) - p(x) │< ε / ║μ║. Let K = - K be a compact subset of H G containing spt p and spt μ G .By 

proposition 3 , choose V to be H-open neighborhood of 0 such that V = - V and (x + V) ∩K ⊂ x + U 

for all x ∊ K; we further assume that (spt p + V)  ∩ (spt μ I  + V) = υ .        

 Now choose γ ∊ Ĥ by proposition 4 such that │γ - ξ│< ε / ║μ║ on K; and choose g ∊ P c (H) 

with spt g ⊂ V, g ≥ 0, and  = 1.  For any x ∊ K, │ (g*pdλ) (x) – p(x) │= 

= < /  

(SinceV∩(x-K)⊂U, x∈spt p). Thus letting f = g *pdλ, spt f ⊂V+spt p and f ε Pc (H) (by proposition 1) 

.Also f(0) < p(0) + ε / ‖μ‖  = 1 + ε / ‖μ‖ and spt f  ∩ spt μ I = υ. For x ∊ spt μ G, 

|f(x)-1|≤|f(x)-p(x)|+|p(x)-1|<2ε∥μ∥ 

And 

 

Now (Since γf is positive definite). 
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Summarizing, given ξ∈ĤG, 

 

And so . 

3.6. Corollary 1:- Let (Ĥ), (ĤG) and τ denote the uniform closures of Fourier-Modified-Stieltjes 

transforms of M(H), M(H G )and I respectively. Then (Ĥ) = (ĤG) ⊕ τ. 

3.7. Corollary 2:-If μ ∊ M (H) and μ ∊ (ĤG), then μ ∊ M (HG). 

3.8. Corollary 3:-Let ĤG be embedded in κ Ĥ (The maximal ideal space of (Ĥ); equivalently , the 

closure of Ĥ in ∆), by γ → πγ from ĤG to κ Ĥ where πγ (μ ) =   (γ ∊ M(H)). Since πγ (μ) = 0 for 

μ ∊ L
1
 (H) (recall G is nonopen in H), πγ ∊ κ Ĥ/ Ĥ (the fringe of Ĥ). In particular, μ ∊ M (H), 

. 

These corollaries follow from the inequality (μ ∊ M (H)). 

Some interesting examples of LCA groups H with nonopen subgroup G are: (1) H nondiscrete and 

      G = {0}. (2) G is noncompact and H= β G the Bhor Compactification of G, (3) G = R (the real 

numbers) and H a compact solenoidal group, and (4) certain local direct product groups embedded in 

the appropriate complete direct product groups. 

4. CONCLUSIONS 

This paper is concerned with bounded projections on Fourier-Modified-Stieltjes transform. In this 

paper certain algebraic projections on measure algebra of locally compact abelian groups were 

studied. This is extended to bounded projections on uniform closure of Fourier-Modified-Stieltjes 

transform. 
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