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Abstract: This paper deals with Alexandroff spaces for which any topology always admits a co-topology. It is 

also shown that this characteristic makes Alexandroff spaces different from common topological spaces. Related 

theorems are demonstrated. 
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INTRODUCTION 

In his article, Russian Mathematician Pavel Sergeevitch Alexandroff (1896 – 1982) has introduced the 

concept of « Diskrete Räume » or discret spaces today known as Alexandroff spaces [1]. 

In my article I put the relationship “topology – co-topology” wich makes Alexandroff spaces different 

from other topological spaces. 

In fact, I show that a topology is a Alexandroff one if and if it has a co-topology (of which opens are 

the closed of the initial topology).  

Let  X=  1,2,… , 𝑝, … , 𝑛  a 𝑛 items set and let 𝜏 a topology onto X. for any p ∈ X, 𝑖 definie 𝑈𝑝 , the 

smallest (in the sense of the set inclusion) item of 𝜏 containing the p point. The 𝑈𝑝   form a base of 𝜏 

called irreductible base. 

The 𝜏 topology is stocked in the form of a binary squared matrix 𝑀 (𝜏)  =  (𝑎𝑝𝑞 ) of 𝑛 order, where 

for any 𝑝 and 𝑞 in X 𝑎𝑝𝑞  =  1if𝑞 ∈  𝑈𝑝  and 0 if not. 

At last, I show (demonstrate) that the matrix of co-topology is equal to the transposed of the matrix of 

topology. 

1. DEFINITIONS OF CONCEPTS 

Definion 1.1. (Alexandroff Space).A 𝑋 topological space is a Alexandroff space if and only if any 

open intersection is an open, i.e., for any 𝑂𝑖 ∈ 𝜏, we have  𝑂𝑖 ∈  𝜏𝑖∈𝐼 . Then any sum of closed of 𝑋 

is a closed of 𝑋. 

Discret topological spaces and finite topological spaces are all Alexandroff spaces. 

Definion 1.2. (Co-topology).Let 𝜏 a topology onto the X set. Let 𝜏* the set of closed of (X,𝜏), i.e.,  𝜏* 

=  S ⊂  X: X\S ∈  𝜏 . If 𝜏* forms a topology onto X, 𝜏* is called in this assumption the co-topology of 

𝜏. 

Example 1.1. Let X= {a, b, c, d}. consider the topology 𝜏 = {∅, {a}, X} the set of the closed of that 

topology is 𝜏* = {∅ , {b, c, d}, X} which is also a topology onto X, therefore a co-topology of 𝜏. 

In general, any topology onto a X finite set admits a co-topology. 
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2. FUNDAMENTAL THEOREMS AND PROPOSITIONS 

Theorem 2.1. Let 𝜏 is a topology onto X. then 𝜏 is a Alexandroff topology if 𝜏 admits a co-topology 

onto X. 

Proof 

If 𝜏 is a Alexandroff topology onto X and 𝜏* =   S c X: X\S ∈  ζ  is the set of closed of (X,𝜏), we have 

clearly that ∅ ∈ 𝜏* by definition of 𝑋 ∈ 𝜏* of∅ ∈ 𝜏*. If A, B ∈ ∅ ∈ 𝜏*, then  X\A ∈  𝜏 and X\B ∈ 𝜏. 

Hence (X\A) ∪ (X\B) = X(A ∩ 𝐵) ∈ 𝜏 (since 𝜏 is a topology, i.e., it means that) A∩ 𝐵 ∈  𝜏*. Equally 

if  𝐴∝ ∈ 𝜏* ∀𝛼 ∈  Γ, then X\𝐴𝛼 ∈ 𝜏∀𝑎  Γ. 

As 𝜏 is a Allexandroff topology onto X, it follows that ∩ {X\𝐴𝛼  : ∝ ∈ Γ} = X\( 𝐴𝛼∝ ∈Γ ) belongs 𝜏. 

This shows (demonstrates) that U{𝐴∝/∝∈ Γ }∈ 𝜏*. Thus 𝜏* is a topology onto X. 

Conversely (reciprocally), assume that 𝜏 admit a 𝜏* co-topology. Show (demonstrate) that 𝜏 is a 

Alexandroff topology. 

Let {Vi : i ∈ I} a set (family) of opens in (X, 𝜏), it must be show (demonstrated) that ∩  𝑉𝑖 : 𝑖 ∈ 𝐼  is an 

open in (X, 𝜏), that to say that its complementary is closed. 

Trough DeMorgan laws we have: X\(∩  𝑉𝑖 ∶ 𝑖 ∈ 𝐼 ) =  (𝑋\ ) ∈ 𝜏* since each X\𝑉𝑖  ∈ 𝜏*, 𝜏* being a 

topology by hypothesis. 

Hence X\(∩  𝑉𝑖 ∶ 𝑖 ∈ 𝐼 ) is a closed in (X,𝜏) and thus ∩  𝑉𝑖 ∶ 𝑖 ∈ 𝐼  is an open in (X,𝜏). This shows 

that 𝜏 is a Alexandroff topology. 

Definition 2.1.Let X a topological space and p ∈ X ; we put Up = 

∩  𝑉 ⊂  𝑋 ∶ 𝑉inanopenof𝑋and𝑝 ∈ 𝑉 . In other words Up is the smallest open containing p. 

Theorem 2.2.Let X a topological space. Then X is a Alexandroff space if and if {Up : and p ∈ X} is a 

base of X opens. 

Proof:  

Assume X a Alexandroff. Let V an open of X and p ∈ V. 

By hypothesis Up is an open of X and it’s the smallest open containing p. hence p ∈  Up⊂ V. what 

shows (demonstrates) that {Up : p ∈ X} is a base of opens of X. 

Reciprocally, assume that the set (family) {Up : p ∈ X} is a base of X opens. 

Let {𝑉𝛼  : ∈ Γ } a some family (set) of X opens. Put V=∩{𝑉𝛼  : 𝛼 ∈  Γ } and show (demonstrate) that V 

is an open of X. 

If  V=∅, there is nothing to demonstrate. If no let p ∈ V. 

Then p ∈ 𝑉𝛼  for any  ∈ Γ. Hence p ∈ Up⊂ 𝑉𝛼∀ 𝛼 ∈  Γ  and thus p ∈ Up⊂  V. this shows 

(demonstrates) that V is next to each of its points, i.e., V is an open of X. 

Definition 2.2.Let X a Alexandroff space. The family ℬ= {Up : p ∈ X} is called the irreductible base 

of X. this base is a characteristic of Alexandroff spaces. 

Example 2.1. Let X={a,b,c} and 𝜏 = {∅, {a}, {a ,c}, {a,b,c}} a Alexandroff topology onto X.Then 

ℬ= {Ua, Ub, Uc } where Ua={a}, Ub= {a,b,c} et Uc= {a,c}. 

Proposition 2.1. Any Alexandroff space possesses an irreductible base. 

Proof 

If X is a Alexandroff space, then family (the set) {Up : p ∈ X} an irreductible base of X. 
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Definition 2.3. Let X={1,2,…,p,…, } a 𝑛 items finite set and let 𝜏 a Alexandroff topology onto X.X 

being finite, any p item of X has a proximity Up = ∩ {V : V ⊂ X and V is an open proximity of p}. 

The family {U1, U2,…,Up, …, Un} forms a base of open proximities of (X,𝜏). 

The matrix of the space topology (X,𝜁) is the binary squared matrix M(𝜁) = (apq)  of 𝑛 order , where 

for any , apq=1 if q ∈ Up and 0 if not.That matrix fully characterizes the 𝜏 topology. 

In fact, as we know the matrix M(𝜏) = (apq), we find all the items of each Up through the following 

rule q ∈ Up if and if apq=1.  

Example 2.2. Consider Alexandroff space (X,𝜏), where X = {a,b,c} and 𝜏 = {∅, {a}, {a,c}, X}. The 𝜏 

topologial matrix is given by 

M(𝜏) =  
1 0 0
1 1 1
1 0 1

 . 

Theorem 2.3.If (apq) is the matrix of the topology of a finite Alexandroff space, then the matrix of the 

co-topology is the transposed (apq). 

Proof 

Let (X,𝜏) a finite Alexandroff space of which the digraph is written D(𝜏), its adjacent matrix is 

defined by A(D(𝜏)) = 𝛽𝑖𝑗  with 

𝛽𝑖𝑗  =  
1 𝑠𝑖 𝑖, 𝑗 ∈ 𝐷 𝜏 𝑒𝑡𝑖 ≠ 𝑗

0 𝑠𝑖𝑛𝑜𝑛
  

The matrix A(D(𝜁)) meets the relation A(D(𝜁)) = M(𝜁) – I where I is the any unit matrix and M(𝜁) the 

matrix of 𝜏 topology. 

Let D(𝜏*) the diagraph of the co-topology, it is the opposite of the D(𝜁) diagraph of the 𝜁 topology 

and A(D(𝜏*)) is the transposed of A(D(𝜏)). 

So we have: M(𝜏*)= I + A
T
(D(𝜏)) = M

T
(𝜁) where A

T
(D(𝜏)) and M

T
(𝜏) respectively pointing the 

transposed of A(D(𝜏)) matrix and the transposed of M(𝜏). Thus M(𝜏*)= 𝑀𝑇(𝜏). 

Example 2.3.Considering the previous Alexandroff space (X,𝜏) where X= 𝑎, 𝑏, 𝑐 , 

𝜏 =  ∅,  𝑎 ,  𝑎, 𝑐 ,𝑋  𝑎𝑛𝑑 𝜏*=  ∅,  𝑏 ,  𝑏, 𝑐 , 𝑋  the matrix of the co-topology is  

M(𝜏*)=  
1 1 1
0 1 0
0 1 1

 . 

3. CONCLUDING REMARKS 

In this paper, I have made a clear relationship between topology and co-topology while dealing with 

Alexandroff spaces. I have also shown that this relationship makes Alexandroff spaces different from 

other topological spaces. Some theorems relating to the matter have been stated and demonstrated. 
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