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Abstract: In this paper, we introduce the concept of relative annihilators in an ADL and study some of their
properties. Also, we characterize a normal ADL R in terms of relative annihilators.
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1. PRELIMINARIES
An Almost Distributive Lattice (ADL) is an algebra (R, v, A) of type (2, 2) satisfying
L(XvyY)Az=(XAZ)Vv(YAZ)
2XA(YVZ)=(XAY)V(XAZ)
. (xvy)ray=y
4. (XVY)AX=X
5. XVv(XAY)=X

It can be seen directly that every distributive lattice is an ADL. If there is an element 0 € R such that
Orna =0 forall aeR, then (R,v,A,0) iscalled an ADL with 0. As usual, an element me R
is called maximal if it is maximal element in the partially ordered set (R,<) . That is, for any a € R,
m<a—=m=a

Let R be an ADL and m € R. Then the following are equivalent.
1). m is maximal with respect to <.
2). mva=m, forall aeR.
3). mana=a, forall aeR.
4). avm is maximal, forall aeR.

An ADL R is relatively complemented if every interval in R is a complemented lattice.

1.1. Theorem : [4] An ADL R s normal if and only if every prime ideal of R contains a unique
minimal prime ideal of R.

1.2. Theorem: [5] An ADL Ris normal ifand only if R=(x) v (y)"
Note that, throughout this paper the letter R stands for an ADL (R, v, A, 0).

2. RELATIVE ANNIHILATORS

Mark Mandelker[1] introduced relative annihilators in lattices. In this section we define a relative
annihilator in an ADL and study some of its properties.

Now, we begin this section with the following definition.
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2.1. Definition:
1) Let Rbe an ADL and A be a nonempty subset of R. For any xeR, we define
xAA={xnralaeA}.

2) For any subsets A, B ofan ADL R, we define | A B|={xeR|xAAcB}.

The following lemma can be verified routinely.

2.2.Lemma: Let A B,C beany three subsets of an ADL R.
Then 1). AcB= |C,A| < |C,B]
2. AcB = |B,C|c |AC]
3. |[AB| n |AC]=|ABNC|
4).|AB|uU |AC| c|ABUC|
5. |AC|]U|B,C| < |AnB,C|
6). | AC|n |B,C|=|AUBC]|
In general for any family {A, | @ € A} of subsets of R, [U,_,A,.C|= N,.| A,.C]

In general the set LA, BJ is not an ideal of R. In the following example we show that the set

| A/B |isnot an ideal when A, B are subsets of an ADL R.

2.3. Example : Let R={0,a,b,c} and define v and A on R as follows:

VIO a b c A0 a b c
0(0 a b ¢ 0|0 0 0 O
ala a a a al0 a b c
blb b b b b0 a b c
cc a b c c 0 c ¢ ¢

Then (R,v,A,0) isan ADL with 0.

Let A={a,b} and B={0,a,b} be two subsets of R For beB and ceR, we have
bac=cgB. Therefore Bisnotanideal of R. Also | AB|={0, a, b}.

Therefore | A,B |= B. Since B is not an ideal, we have | A B |is not an ideal of R. Thus, when
A, B are any two subsets of R, the set | A B |is not an ideal of R.

In the following result, we prove that | A, B |is an ideal of Rif B isan ideal of R.

2.4. Theorem : If A is asubset of an ADL R and B is an ideal in R, then LA, BJ is an ideal of
Rand B | AB|

Proof : Clearly, 0| A B |Therefore | A B |is non-empty. Let x,ye| A, B| Then xAaeB
and yAraeB forevery ae A Since Bis an ideal, (xAa)v(yna)eB forall ac A. That is
(xvy)raeB, forall ac ATherefore xvye| AB| Letxe| AB|. Then xaaeB, forall
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ae ASince Bisanideal of R, foranyreR , rAXAaeB and henceXArnaeB , for every
ae AThis givesxAr €| A B| . Therefore | A B |is an ideal of R. Now, since Bis an ideal,

xeB=xAaeB, forall ae A
This givess XAA < B andhence xe| A B|. Therefore B < | AB |

2.5. Definition : Let A be a subset of an ADL Rand B is an ideal in R. Then we call the ideal
| A B |as arelative annihilator of A with respectto B

By usual verification we get the following :

1.1f B ={ 0}, then | A B|isan annihilator of A.
2.1f A= B and Bisanideal of R then | A B |=R.

3.1f A={0} and Bis an ideal of Rthen | AB| =

pu

2.6. Definition : Let Rbean ADL and a,b € R. Then we define
|a,b| ={xeR|xra=baxna}.
Observe that xe| a,b |< xAa=baxaa <b=bv(xna)

Now we prove the following.

2.7.Lemma: Foranya,beR , |ab|=|(a],(b]]

Proof : Let xe|a,b|. Then xAa=baxaa and for anyteR,xrant=baxsant .
Clearly, x Aant e (b].Therefore x A's e (b], for everys =ant  (a] and hence x €| (a], (b] |

Thus | ab]c | (al (o] ]

Let x| (a],(b] |. Then x As & (b], forall s e (a]. Since a(a], we get xAa e (b]
and hence b AXxAa=xnaa. Therefore xe|a,b|. Thisgives | (a],(b] | = [a,b].
Hence | a,b |=| (a, (b] |

By Theorem 1.4 and from Lemma 1.7, we get the following.

2.8. Corollary: Forany a,beR, |a,b|isanidealof R. [t,a]

2.9.Lemma: Let ce R and A beanideal of R.

Thenforany te(c] and ae A, |c,a| c|t,a] <|(t].(a]]

Proof : Let A beany ideal of Rand ceR. Let t e (c].

Then (t] < (c].and hence from (2) of Lemma 1.2, we get | (c],(a] | = | (t].(a]] .cccooonn (1)
Since A isanideal and ae A, weget (a] < A

Therefore from (1) of Lemma 1.2, we get |_(t], (a]J c |_(t], AJ ............... (1)

From (1) and (1), we get | (c],(a] | < | (t].(al | <[ (t]. A
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Therefore from Lemma 1.7, we get | c,a | | t,a | <| (t] A|

The following lemma can be verified routinely.

2.10. Lemma: Forany a,beR,
1). |a,b]=|b,a]ifandonlyif anb=b and bra=a.
2).|a,0]=[0,a]ifandonlyif a = 0.
3). Foranya,be R—{0} , |a,b| = | b,a] ifand only if Ris adiscrete ADL.

Now, we prove some important properties of relative annihilators.
2.11. Theorem : Let Rbe an ADL and a,b e R. Then

1).se|lab|<ae|sb]|

2).selab]=]as]| c|ab]

3). Forany a,beR, ae|b,anb|andbe|ab|
Proof: 1)Let a,beR. Thense|ab| = sra=bassa

= SAaAnS=bAsSAans

= ans=bAans
= ae[s,b]
Similarly, we can prove ae|s,b| = se|ab]|
2) Letse|ab]| Then shna=basna,

Now xe|as| =xra=saxaa

> XAna=XASAna

= XxAra=XAbAsaa (since sha=basaa)

= XAa=bASAXAa

= XAa=DbAaXAaa (since sAxAra=xna)
— xe| a,b| Therefore |a,s | < | a,b]

3) is clear.

2.12.Lemma: Forany a,b,c inan ADL R, we get the following.

1).1f a<b thenforany ceR, |b,c|< |a,c| and |ca] c|c,b]
2).|ab|=|aanb] =|abra] =|avba]=|bvaa|=|avhanb]|

3. R=|0,a|=|aa|=|aavb|=|abva|=|asba|=|braa|=]|asbavb]|
4).Foranya,b,ceR, |avbc]|=|bvac]| |arbc|_|bArac]

|c,anb|=|c,bra] and |c,avb]=|cbva]|
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5).Forany a,b,ceR, i). |ac]|v|bc]| < |aab.c]
i). |[a,b|v]ac| < |abvc]
iii). [avb,c|=|ac|n|b.c]
iv). [a,bac] =|ab]n]ac]

6). In addition to these, if R is a relatively complemented ADL then

la,b]v]ac]| - [abvc]|
Proof :

1). Let a,b be any two elements of R suchthat a<b. Then anb=a=bnaa.
Now, XeLb,CJ = XAb=CcAXADb
= XAbara=caxaAbaa
= XA@=CAXArad => Xe|ac|
Therefore | b,c| < |a,c]|
Now, X€|c,a] = XAC=aAXAC = XAC=bAraAXxac
= XAC=DAXAC (sinceXAC=aAXAC)
— xe|c,b] . Therefore [c,a] < |c,b]
2). Let a,b be any two elements of R.
Now, xe|a,b| < xaa=baxaa < xra=asbaxaa < xelaanb]|
Therefore | a,b | = |a,anb]|

Similarly, we can prove the remaining results.
3) is clear.

4). Let a,b,c be any three elements of R. Xxe|avhb,c|
Now, Xxe|avh,c| = xa(avb)=caxa(avh)
= xa(avb)a(bva)=caxa(avb)a(bva)
= xa(bva)a(bva)=caxan(bva)a(bva)
= Xxa(bva)=caxa(bva)
Therefore |avb,c| < |bva,c| Similarly, we can provethat |bva,c| < [avb,c|
Hence [avb,c| = |bva.c]|

Similarly, we can prove the remaining results.

5). Let a,b,c be any three elements of R .

Now, from (1), aAb<b :>|_b,CJ gLa/\b,cJ
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Similarly, we get bra<a =|a,c| c|baa,c|=|aab,c] [from (4)].
Therefore | a,c | v|b,c|c|anb,c|
(ii) : Proofissimilarto (). |avb,c|c|a,c|n|b,c]
(iii): Let a,b,c e R. Then from (1) and (4), we get |avb,c|c|ac|xe|b,c|
Now, xe|a,c|n|b,c|] = xe|ac]and xe|b,c]|
= xra=caxaa and XAb=CAXADb
= (xra)v(xab)=(caxaa)v(caxab)
= xa(avb)=caxna(avb)
= xelavb,c|
Thereforewe get | a,c| | b,c| = |avhb,c]
Hence |avb,c| =|ac]|n|b.c|
(iv): Let a,b,c € R. Then from (1) and (4), we get | a,bac| = |a,b] M| a,c]
Now, xe|a,b|n|a,c|] = xe|ab]and xe|a,c|
= XAa=bAXAaand xAa=caxaa
= (xAna)A(xArd) = bAXAQACAXAQ

= XxAra=bAcCAXxAa

— xe|abnc]
Therefore we get | a,b | | a,c | = |a,bac]
Hence |a,bac|=|ab]n|ac]|

6). Let R be a relatively complemented ADL and a,b,c € R. From (5), we have | a,b|v|a,c|

|a,bvc] . Now, let xe|abvc| Consider the interval [0,avx]. Since Ris relatively

complemented ADL, every interval in Ris a complemented lattice. Therefore [0,av x] is a
complemented lattice. Let @' be the complement of a in the interval[0,av x] . Then ana’ =0
and ava'=av Xx. Now,

xe|abvc| (bve)axra=xna

a'v[(bbvc)axaal=a'v(xaa)
@vbve)a@'vx)ya(@va)=(@vx)a(@va)
@vbve)a@v)a(avx)=(@vx)a(avx)
@vbve)a@v)a(av)ax=@vx)a(avx)Ax

(@vbvec)ax=x

L A

[@VvDb)AX]v[(@vc)AXx]=X
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Now, (a'vb)axaa = (a'Axaa)v(baxnaa)

Ov(baxna)

(@'vb)Abaxnaa
=bA(@’'vb)axaa (since (a'vb)Ab=Db)
This gives (a'vb) Axe|a,b]. Similarly, we get (a'vc)axe |a,c|
Therefore x=[(a'vb) Ax]v[(@'vc)Ax] €[ ab|v|ac]|
Thisgives | a,bvc| <|ab]v]ac].Hence |ab|v]ac|- |abvc]|
2.13. Lemma: Forany a,b,c inan ADL R, we get the following.
1).|a,0]=(a)* ., where (a) ={xeR|aAx=0}
2).1f avb or bva isanelementof | a,b| then|ab|=R
3).1f anb=0, thenforany ceR, ae|b,c|
Let a,be R with a<b and x,y [a,b]. Then we can observe that Lx,ajm[a, b] is
an ideal in [a, b].

Now we prove the following theorem.

2.14. Theorem : Let Let I,J beany two ideals of R and X,y € R. Then

. [ =[xy]

xel

2. 11,3 =19}

xel

3). (1.3 |=|xy]=V,,[xYy]
4). Let a,beR with a<b and x,y €[a,b]. Then
{xa|v|y.afltnlab] ={ xa|n[abl}v{y.a|[ab]}

Proof :
(1): Foranyx e I,(X]< | . Therefore from 2 of Lemma 1.2,

weget | 1,(yl|<[ (1.1 =[x y]. Thus [ 1, (yll<( )% Y]

xel

Again, let te| x,y | forall xel. Then tAx=yAtaxe(y] forall xel.

This givest €| 1,(y]|. Therefore ()| x,y || 1.(y1].

xel

(2) Take J = (Y] in the above result (1).
(3) : From (1) of Lemma 1.2 and from Lemma 1.7, forany y € J,

we have | x,y|= |(x],(y]] <|(x],d] . Lette[(x],J] . Then taseJd for all se(x].
Sincexe (x] ,weget t Ax=y forsomeyeJ .Clearly, y At AX=t AX. Therefore t €| X,y | for

some y e J . Thisgives | (X],J | < \/ [ x Y]

yed
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Therefore | (x],J | =\/ | X,y

yed

(4): Let a,beR with a<b and x,y e[a,b].

Clearly, {{ x,a|n[ab]}$\wees { y,a|[ab]}c { x.a|v|y.a]} ~lab].

Now, let se{| x,a|v|y,a[} M[a,b].

Then s=t, vt,, where t, €| x,a|, t, €| y,a| and se[a,b].

Thisgives a<s=t vt,<b where t AX=aAt Axand t, Ay=anat,Ay.

Now s=(avs)ab=(avt vt,)Ab =[(avt)v(avt)ab=[(avt)ab]lv[(avt,)Ab].
Clearly, (avt) b, (avt,)Abela,b].

Now we prove that (avt,)Abe| x,a|and (avt,)Abe|y,a].

Now, (avt)abax = (aanbax) v ({, ADAX)
(@anbax) v [bAa(t, AX)]

(anbax) v [ba(ant AX)]

(anbax) v (t, AanbaXx)

(anbax)

an(avt)Abax
Therefore (avt)Abe|x,a]. Similarly, we can prove (avt,) Abe| y,a] .

Therefore we get s {| x,a |[a,b]}{ v.a |~[a,b]} . This proves the result.
3. CHARACTERIZATION OF NORMAL ADLS IN TERMS OF RELATIVE ANNIHILATORS

In this section, we characterize a normal ADL in terms of Relative annihilators.
First we prove the following Lemma.

31 Lemma: Let a,beR. Then xe|a,b | ifandonlyif aax<bax,

Proof : Let a,b be any two elements of R. Assume that X €| a,b|. Thenxra=bAaxAa . Now

XxAaAax = bAaxaaax. This gives aaX=aanbAaX<bax. Therefore anx<bax
Conversely, assume that aAx and bAX are comparable. Without loss of generality, take
anxX<bax Then aanx=ananxabaa. Thisgives anxana = aaXaAbAaxaa and hence

xna =baxaa . Therefore xe|a,b|

3.2. Lemma : Let | be any ideal of an ADL Rand for any prime filter F of R,InF=#¢ .
Then | = R

3.3. Corollary : Forany a,beR and for any prime filter F of R , {{a,b |v|b,a fnF = ¢
3.4.Lemma: Let F be any prime filter of R. Forany a,beR,if be Fv[a) then F[ab] is
non-empty .

Proof : LetbeFv[a) . Then b=tAs for some teF and se[a). Thatis b=tA(sva) =
(tAs)v(tra) = bv(taa). This gives ba(tra)=taa Therefore te|ab]|
Thust e F | a,b | . Therefore F | a,b |is non-empty.
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Now, we conclude this section with the following theorem in which we characterize a normal ADL
R in terms of relative annihilators.

3.5. Theorem : Inan ADL R, the following are equivalent.
1). R isanormal ADL.

2).|a,b]v|b,a] =R, forany a,beR, with anb=0.
3). For any prime filter F in R and for any a,b e Rwith aAb=0, there exists X € F

such that a A x and b A X are comparable.
Proof : (1) = (2): Assume that R is a normal ADL. Then from Theorem 0.2, we have every prime
filter in R is contained in a unique maximal filter of R. Let a,b e Rwith aab=0. We have to
prove that R=| a,b |v|b,a|. Suppose I =| a,b|v|b,a|=R. Then I isa proper ideal of R and
hence it is contained in a maximal ideal, say M. Write F = R — M. Then F is a prime filter and

F 1 =. Now, we prove that the prime filter F is contained in two distinct maximal filters of R.
Consider the filter Fv[a). If be Fv[a), then from Lemma 2.4, we get F n(a,b) =d. This

gives F 1 =, This is a contradiction. Thereforeb ¢ Fv[a) . Therefore F\[a) is a proper
filter of R. Similarly, we can prove that F v/ [b) is a proper filter of R. Therefore, there exist two
maximal filters G,,G, in Rsuch that Fv[a) <G, and Fv[b) <G,. Since anb=0
and0 ¢ G, , we get b ¢ G,. Hence we get G, #G,.

Also, F < G,and F < G,. Thus the prime filter F is contained in two distinct maximal filters
G,and G, . This is a contradiction. Therefore | a,b |v|b,a | = R forany a,b e R with anb=0.

(2) = (3) : Assume the condition (2). Let F be any prime filter of Rand a,beR withaAb=0 .
Then by (2), |a,b|v|b,aj= R Let zeF < R. Then we can writt z=xvYy for some

xe|ab] and ye|b,a|. Since Fis prime and z=xvyeF, we get either xe F or yeF.
Suppose X € F. Since X €| a,b|. from Lemma 2.1, we geta A X <bAX. Thus there is an element

X € Fsuch that a A xand b A Xare comparable. Similarly we get a A xand b A X are comparable,
if yeF.

(3) = (1) : Assume the condition (3). We have to prove that Ris normal. Let a,beRand

anb=0. Now, we prove that(a ) v(b) =R . Suppose (a) v (b) #R. Then there exists a

maximal ideal M of Rsuch that(a) v(b) M . Writt F = R — M. Then Fis a prime
filter. Therefore from (3), there exists X € F such that a A x and b A X are comparable. Without loss
of generality, suppose that aAX<bAX. Then aanx=aAaxXxaAbaXx =aabax=0
Thereforex € (a )" < M . This is a contradiction (since X € F). Therefore (a) v(b) =R.
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