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Abstract: In this paper, we introduce the concept of relative annihilators in an ADL and study some of their 

properties. Also, we characterize a normal ADL R  in terms of relative annihilators.  
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1. PRELIMINARIES 

 An Almost Distributive Lattice (ADL) is an algebra ( , , )R    of type (2, 2)   satisfying 

1. ( ) ( ) ( )x y z x z y z                

2.  ( ) ( ) ( )x y z x y x z        

3. ( )x y y y             

4. ( )x y x x             

5.  ( )x x y x     

It can be seen directly that every distributive lattice is an ADL. If there is an element 0 R  such that 

0 a  = 0    for all ,a R  then  ( , , ,0)R    is called an ADL with 0.  As usual, an element m R  

is called maximal if it is maximal element in the partially ordered set ( , )R   . That is, for any ,a R    

.m a m a     

Let R be an ADL and .m R  Then the following are equivalent. 

1).  m  is maximal with respect to .   

2).  ,m a m   for all .a R   

3).  ,m a a   for all .a R   

4).  a m  is maximal, for all .a R   

An ADL R  is relatively complemented if every interval in R is a complemented lattice.  

1.1. Theorem :  [4] An ADL R is normal if and only if every prime ideal of R  contains a unique 

minimal prime ideal of R . 

1.2. Theorem: [5] An ADL R is normal if and only if   
* *(   ) (   ) .R x y    

Note that, throughout this paper the letter R stands for an ADL ( , , ,0).R     

2. RELATIVE ANNIHILATORS 

Mark Mandelker[1] introduced relative annihilators in lattices. In this section we define a relative 

annihilator in an ADL and study some of its properties.  

 Now, we begin this section with the following definition. 
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2.1. Definition: 

1) Let R be an ADL and A  be a nonempty subset of R . For any ,x R  we define      

{ }.x A x a a A   ∣   

2) For any subsets ,A B  of an ADL R , we  define   ,A B   = { }.x R x A B  ∣   

The following lemma can be verified routinely. 

2.2. Lemma :  Let   , ,A B C  be any three subsets of an ADL R . 

Then     1).  A B    ,C A       ,C B    

             2).  A B   ,B C      ,A C    

3).  ,A B        ,A C    =  ,A B C     

4). ,A B     ,A C      ,A B C     

5). ,A C    ,B C       ,A B C    

6). ,A C     ,B C    =  ,A B C    

In general for any family { }A  ∣  of subsets of R , ,A C     =  ,A C       

In general the set ,A B   is not an ideal of R . In the following example we show that the set 

,A B   is not  an ideal when ,A B  are subsets of an ADL R . 

2.3. Example :  Let {0, , , }R a b c  and define   and   on R as follows: 

 V   0    a     b    c    Λ    0    a    b    c  

    0   0    a     b    c   0    0    0    0    0   

a   a    a     a    a   a    0    a    b    c  

 b  b    b     b    b   b    0    a    b    c  

c   c     a     b    c   c    0    c     c    c  

Then ( , , ,0)R    is an ADL with 0 . 

Let { , }A a b  and {0, , }B a b  be two subsets of R . For b B  and ,c R  we have  

.b c c B     Therefore B is not an ideal of R . Also ,A B   =   0,  ,   .a b   

Therefore ,A B   = .B
  

Since B  is not an ideal,  we have ,A B   is not an ideal of R . Thus, when 

,A B  are any two subsets of R , the set ,A B   is not  an ideal of R . 

In the  following result, we prove that ,A B   is an ideal of R if  B  is an ideal of R . 

2.4. Theorem :  If A  is a subset of an ADL R  and B  is an ideal in R , then  ,A B   is an ideal of 

R and B   ,A B    

Proof :   Clearly, 0 ,A B   Therefore ,A B   is non-empty.  Let , ,x y A B   .
 Then x a B   

and y a B   for every .a A  Since B is an ideal, ( ) ( )x a y a B     for all .a A . That is 

( ) ,x y a B    for all .a A Therefore ,x y A B    .
 Let ,x A B    .   Then ,x a B   for all 
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.a A Since B is an ideal of R , for any r R  , r x a B    and hence x r a B    , for every 

.a A This gives ,x r A B     . Therefore ,A B   is an ideal  of R . Now, since B is an ideal,  

,x B x a B     for all .a A  

This gives x A    B   and hence  , .x A B    Therefore B    ,A B    
 

2.5. Definition :  Let A  be a subset of an ADL R and B is an ideal in R . Then we call the ideal 

,A B   as a relative annihilator of A  with respect to B . 

By usual verification we get the following :  

1. If B  =   0 ,  then ,A B   is an annihilator of A . 

2. If A  B  and B is an ideal of R  then ,A B   = R . 

3. If {0}A   and B is an ideal of R then ,A B     = R  

2.6.  Definition :  Let R be an ADL and  , .a b R  Then we define 

                                      
,a b    = { }.x R x a b x a    ∣   

Observe that ,x a b      x a b x a       ( )b b x a      

Now we prove the following. 

2.7. Lemma :  For any ,a b R  , ,a b    = ( ],( ]a b     

Proof : Let , .x a b    Then  x a b x a     and  for any ,t R x a t b x a t        . 

Clearly, ( ]x a t b   .Therefore ( ]x s b  , for every ( ]s a t a    and hence ( ],( ]x a b     

Thus  ,a b     ( ],( ]a b    

Let ( ],( ] .x a b    Then ( ],x s b   for all ( ].s a  Since ( ],a a  we get ( ]x a b    

and hence  .b x a x a     Therefore  , .x a b    This gives ( ],( ]a b     ,a b   . 

Hence ,a b   = ( ],( ]a b    
 

By Theorem 1.4 and from Lemma 1.7, we get the following.  

2.8. Corollary:  For any , ,a b R  ,a b   is an ideal of R .   ,t a    

2.9. Lemma :  Let c R   and A  be an ideal of R .  

Then for any ( ]t c  and  ,a A  ,c a     ,t a    ( ],( ]t a            

Proof :  Let A  be any ideal of R and .c R  Let ( ].t c   

Then  t    ( ].c and hence from (2) of Lemma 1.2, we get  ( ],( ]c a    ( ],( ]t a    .............(I) 

Since A  is an ideal and ,a A  we get  a   A  

 Therefore from   (1) of Lemma 1.2, we get ( ],( ]t a   ( ],t A     ...............(II) 

 From (I) and (II), we get ( ],( ]c a     ( ],( ]t a   ( ],t A     



S. Ravi Kumar & G.C.Rao 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 4 

Therefore from Lemma 1.7, we get ,c a    ,t a    ( ],t A       

The following lemma can be verified routinely. 

2.10. Lemma :  For any , ,a b R   

1). ,a b   = ,b a    if and only if a b b   and .b a a    

2). ,0 0,a a        if and only if   0.a    

3). For any , {0}a b R   , ,a b    = ,b a    if and only if R is a discrete ADL. 

Now,  we prove some important  properties of relative annihilators. 

2.11. Theorem :  Let R be an ADL and , .a b R  Then  

1). ,s a b   ,a s b     
 

2). ,s a b   ,a s    
   ,a b     

3).  For any ,a b R ,   ,a b a b     and ,b a b     

Proof :  1) Let , .a b R   Then ,s a b      s a b s a     

    s a s b s a s       

    a s b a s     

      ,a s b     

Similarly, we can prove    ,a s b       ,s a b      

2)   Let , .s a b    Then .s a b s a      

Now   ,x a s     x a s x a     

                                 x a x s a     

                                  x a x b s a       (since )s a b s a      

           x a b s x a        

        x a b x a     (since )s x a x a      

       ,x a b    Therefore ,a s      ,a b    

3)  is clear.  

2.12. Lemma :   For any , ,a b c  in an ADL R , we get the following. 

1). If a b  then for any ,c R  ,b c     ,a c       and   ,c a      ,c b    

2). ,a b   = ,a a b    = ,a b a    = ,a b a    = ,b a a    = ,a b a b      

3). 0,R a    ,a a     = ,a a b   = ,a b a   = ,a b a   = ,b a a   = ,a b a b      

4). For any , ,a b c R , ,a b c    = ,b a c   , ,a b c    = ,b a c                                   

                                     ,c a b    =  ,c b a      and  ,c a b    = ,c b a    
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5). For any , , ,a b c R    i).  ,a c    ,b c        ,a b c    

                                        ii). ,a b    ,a c       ,a b c    

      iii). ,a b c   ,a c    ,b c    

 iv). ,a b c    ,a b    ,a c    

6). In addition to these, if R  is a relatively complemented ADL then   

                                           ,a b    ,a c    =  ,a b c                                          

Proof : 

1). Let ,a b  be any two elements of R  such that .a b  Then .a b a b a      

 Now,  ,x b c    
     x b c x b           

       x b a c x b a        

       x a c x a         ,x a c     

Therefore ,b c      ,a c    

 Now, ,x c a        x c a x c           x c b a x c       

                                 x c b x c      (since x c a x c     ) 

      ,x c b    . Therefore  ,c a       ,c b     

2).  Let ,a b  be any two elements of R . 

Now, ,x a b          x a b x a         x a a b x a          ,x a a b      

Therefore ,a b    =   ,a a b    

Similarly, we can prove the remaining results. 

3) is clear. 

4). Let , ,a b c  be any three elements of R .  ,x a b c     

Now, ,x a b c         ( ) ( )x a b c x a b        

             ( ) ( ) ( ) ( )x a b b a c x a b b a            

             ( ) ( ) ( ) ( )x b a b a c x b a b a            

             ( ) ( )x b a c x b a        

Therefore  ,a b c      ,b a c    Similarly,  we can prove that ,b a c       ,a b c     

                      Hence ,a b c    =  ,b a c     

Similarly, we can prove the remaining results. 

5). Let , ,a b c  be any three elements of R . 

Now,    from (1),       a b b        ,b c    
,a b c             
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Similarly, we get        b a a       ,a c    
,b a c     = ,a b c    [from (4)].  

               Therefore  ,a c   ,b c    ,a b c         

 (ii) :  Proof is similar to (i).    ,a b c    ,a c   ,b c    

 (iii): Let , , .a b c R  Then from (1) and (4), we get  ,a b c    ,a c   ,x b c    

Now,  ,x a c   ,b c         ,x a c    and  ,x b c    

          x a c x a     and  x b c x b      

          ( ) ( ) ( ) ( )x a x b c x a c x b           

          ( ) ( )x a b c x a b        

           ,x a b c     

Therefore we get ,a c   ,b c    


 
,a b c    

Hence    ,a b c     = ,a c   ,b c         
 

 (iv): Let , , .a b c R  Then from (1) and (4), we get ,a b c      ,a b   ,a c     

        Now, ,x a b   ,a c         ,x a b    and ,x a c    

    x a b x a     and x a c x a      

    ( ) ( )x a x a    = b x a c x a       

    x a b c x a       

     ,x a b c     

Therefore we get ,a b   ,a c      ,a b c       

                      Hence ,a b c    = ,a b   ,a c     

 6). Let R  be a relatively complemented ADL and , , .a b c R  From (5), we have ,a b    ,a c      

,a b c    . Now, let ,x a b c     Consider the interval [0, ].a x  Since R is relatively 

complemented ADL, every interval in R is a complemented lattice. Therefore [0, ]a x  is a 

complemented lattice. Let a  be the complement of a  in the interval[0, ]a x  .  Then 0a a   

and .a a a x    Now,   

         ,x a b c          ( )  b c x a x a        

                                      [( ) ] ( )a b c x a a x a          

             ( ) ( ) ( ) ( ) ( )a b c a x a a a x a a                                                          

             ( ) ( ) ( ) ( ) ( )a b c a x a x a x a x              

                                       ( ) ( ) ( ) ( ) ( )a b c a x a x x a x a x x                

                                       (  )a b c x x      

                                       [( ) ] [( ) ]a b x a c x x         
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Now,  ( )  a b x a     =  ( ) ( )a x a b x a        

    =    0 ( )b x a     

    =   ( )  a b b x a      

    = ( )b a b x a      (since ( ) )a b b b     

 This gives ( ' )a b x   ,a b   .  Similarly, we get ( ' )a c x    ,a c    

Therefore [( ) ] [( ) ]x a b x a c x        ,a b    ,a c     
 

 This gives ,a b c     ,a b    ,a c    . Hence  ,a b    ,a c    =  ,a b c    

2.13. Lemma :   For any , ,a b c  in an ADL R , we get the following. 

1). ,0 ( )*a a    ,   where 
*( ) { 0}a x R a x   ∣   

2). If a b  or b a  is an element of ,a b     then ,a b R     

3). If 0,a b   then for any ,c R  ,a b c     

Let ,a b R  with a b  and , [ ,  ].x y a b  Then we can observe that , [ , ]x a a b    is 

  an ideal in  ,  . a b   

Now we prove the following theorem. 

2.14. Theorem :  Let  Let  ,I J  be any two ideals of R  and , .x y R  Then  

1). ,( ]I y    = ,
x I

x y


      

2). ,  I J    = ( ],
x I

x J


      

3).  ( ],x J     ,x y    = V , .y J x y      

4). Let ,a b R  with a b  and , [ , ].x y a b  Then 

             { , , } [ , ]x a y a a b         = { , [ , ]} { , [ , ]}.x a a b y a a b           

Proof : 

(1): For any , ( ]x I x I   . Therefore  from 2 of  Lemma 1.2, 

we get  ,( ] ( ],( ]I y x y        = ,x y   .  Thus , ( ] ,  .
x I

I y x y


         

Again, let ,t x y    for all .x I  Then ( ]t x y t x y      for all .x I  

 This gives ,( ]t I y    .    Therefore , , ( ] . 
x I

x y I y


         

(2) Take ( ]J y  in the above result (1). 

(3) :  From (1) of Lemma 1.2 and from Lemma 1.7, for any ,y J   

we have ,x y   = ( ],( ]x y      ( ],x J    . Let ( ],t x J    . Then t s J   for all ( ].s x  

Since ( ]x x  , we get t x y    for some y J  . Clearly, y t x t x    . Therefore ,t x y    for 

some y J . This gives ( ],x J     , .
y J

x yV


     
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Therefore  ( ],x J    = , .
y J

x yV


    

(4) :   Let ,a b R  with a b  and , ]. [ ,x y a b  

 Clearly,   { , [ , ]}x a a b    $\vee$ { , [ , ]}y a a b     { , , }x a y a         [ , ].a b   

Now,  let { , , }s x a y a         [ , ].a b  

Then 1 2 ,s t t   where 
1 ,t x a   , 

2 ,t y a    and [ ,  ].s a b   

This gives 1 2a s t t b     where 1 1t x a t x     and 2 2 .t y a t y       

Now 1 2    ( )    ( )s a s b a t t b        = 1 2[( ) ( )]a t a t b    = 1 2[( ) ] [( ) ].a t b a t b       

Clearly, 1( ) ,a t b  2( ) [ , ].a t b a b    

Now we prove that 
1( ) ,a t b x a      and 

2( ) , .a t b y a       

Now,    1( )a t b x     =  ( )a b x     1( ) t b x    

        =  ( )a b x      1[ ( )] b t x    

       =  ( )a b x     1[ ( )]b a t x     

        =  ( )a b x     1( )t a b x     

        =  ( )a b x      

        =   1( )a a t b x      

 Therefore  
1( ) ,a t b x a     .  Similarly, we can prove

2( ) ,a t b y a      .  

Therefore  we get s  { , [ , ]}x a a b   { , [ , ]}y a a b    . This proves the result. 

3. CHARACTERIZATION OF NORMAL ADLS IN TERMS OF RELATIVE ANNIHILATORS 

In this section, we characterize a normal ADL in terms of Relative annihilators. 

First we prove the following Lemma. 

3.1. Lemma :  Let  , .a b R  Then  ,x a b    if and only if .a x b x     

Proof :  Let ,a b  be any two elements of R . Assume that , .x a b    Then x a b x a     . Now 

x a x   = b x a x   . This gives .a x a b x b x       Therefore .a x b x    

Conversely, assume that a x  and b x  are comparable. Without loss of generality, take 

.a x b x    Then .a x a x b a      This gives  a x a   =  a x b x a     and hence  

x a  = b x a   . Therefore  ,x a b     

3.2. Lemma : Let I  be any ideal of an ADL R and for any  prime  filter F  of R , I F    .   

Then   .I R   

3.3. Corollary : For any ,a b R  and for any prime filter F of R  , { , , }a b b a F                                      

3.4. Lemma :  Let F be any prime filter of R . For any  ,a b R , if [ )b F a   then ,F a b     is 

non-empty .  

Proof :  Let [ )b F a   . Then b t s   for some t F  and [ ).s a  That is ( )b t s a    = 

( ) ( )t s t a    = ( ).b t a   This gives ( ) .b t a t a     Therefore ,t a b    

Thus ,t F a b     . Therefore ,F a b   is non-empty.  
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Now, we conclude this section with the following theorem in which we characterize a normal ADL 

R in terms of relative annihilators. 

3.5. Theorem :  In an ADL R , the following  are equivalent. 

1). R  is a normal ADL. 

2). , ,a b b a        = R , for any , ,a b R  with 0.a b    

3). For any prime filter F  in R  and for any ,a b R with 0a b  ,  there exists x F     

      such that a x  and b x  are comparable. 

Proof :  (1)  (2): Assume that R is a normal ADL.  Then from Theorem 0.2, we have every prime  

filter in R is contained  in a unique maximal filter of R .  Let  ,a b R with 0a b  . We have to 

prove that , ,R a b b a        . Suppose , , .I a b b a R          Then I  is a proper ideal of R and 

hence it is contained in a maximal ideal, say .M  Write     .F R M   Then F  is a prime filter and  

.F I   Now, we prove that the prime filter F  is contained in two distinct maximal filters of R . 

Consider the filter [ ).F a  If [ ),b F a   then from Lemma 2.4, we get ( , ) .F a b   This 

gives .F I   This is a contradiction. Therefore [ )b F a   . Therefore [ )F a  is a proper 

filter of R . Similarly, we can prove that [ )F b  is a proper filter of R . Therefore, there exist  two 

maximal filters 1 2,G G  in R such that [ )F a    1G  and [ )F b   2G .  Since 0a b   

and 10 G  , we get 1.b G  Hence we  get  1 2G G .  

Also,  F   1G and F  2G . Thus the prime filter   F is contained in two distinct maximal filters 

1G and 2G . This is a contradiction. Therefore , ,a b b a        = R  for any ,a b R  with 0.a b    

(2)  (3) : Assume the condition (2). Let F be any prime filter of R and ,a b R  with 0a b   . 

Then by (2), , ,a b b a       = R  Let z F   R . Then we can write z x y   for some 

,x a b    and , .y b a    Since F is prime and  z x y F   , we get either x F   or .y F  

Suppose x F . Since , .x a b    from Lemma 2.1, we get a x b x   . Thus there is an element 

x F such that  a x and b x are comparable. Similarly we get a x and b x  are comparable, 

if .y F  

(3)  (1) : Assume the condition (3). We have to prove that R is normal. Let ,a b R and 

0a b  . Now, we prove that
* *(   ) (   )a b R   . Suppose 

* *(   ) (   ) .a b R   Then there exists a 

maximal ideal M  of R such that
* *(   ) (   )a b  M  . Write     .F R M   Then F is a prime 

filter. Therefore from (3), there exists x F such that a x  and b x are comparable. Without loss 

of generality, suppose that a x b x   . Then a x a x b x      = 0a b x    . 

Therefore
*(   )x a  M . This is a contradiction (since x F ). Therefore 

* *(   ) (   )a b R  . 
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