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Abstract: Explicit Finite-Difference method was used to obtain the solution of the system of the non-linear 

ordinary differential equations which obtained from the non-linear partial differential equations. These 

equations describe the two- dimensional flow of a MHD third-order Nano-fluid with heat and mass transfer in a 

circular cylindrical tube having two walls that are transversely displaced by an infinite, harmonic traveling 

wave of large wave length. Accordingly, the solutions of momentum, energy, concentration, and Nano-particles 

concentration equations were obtained. The numerical formula of the stream function, the velocity, the 

temperature, the concentration, and the Nano-particles distributions of the problem were illustrated 

graphically. Effects of some parameters of this problem such as, local nanoparticle Grashofnumber Br, local 

temperature Grashof number Gr, Darcy number Da, magnetic field parameter M, Eckert number Ec, Dufour 

number Nd, Brownian motion parameter Nb, Thermophoresis parameter Nt, Prandtl number Pr, radiation 

parameter Rn, Lewis number Le, Sort number Sr,and Chemical reaction parameter Rc on those formula were 

discussed. Also, an estimation of the global error for the numerical values of the solutions is calculated by using 

Zadunaisky technique. 

Keywords: Third-order nano-Fluid, peristatic Motion, MHD flows, Porous medium, Radiation, Chemical 

reaction.

 
Nomenclature 

Reynolds number, defined by Eq. (38) 
   

Re  
Chemical Reaction rate constant A 

Radiation parameter, defined by Eq. (38) 
   

Rn  

Local nanoparticle Grashof number,  

defined by Eq. (38) 

B

r 

The dimensionless nanoparticles 𝑆  
The concentration of the fluid  C 

Sort number, defined by Eq. (38) Sr 
 

The concentration at the centerline 

(𝑦 = 0) 
𝐶1 

The time t 
 

The concentration at the wall  𝑦 = 𝑕  𝐶2 

The fluid temperature T 
 

Nanoparticle susceptibility  𝐶𝑠 

The temperature at the centerline (𝑦 = 0) 𝑇1 
 

Darcy number, defined by Eq. (38) 
D

a 

The temperature at the wall  𝑦 = 𝑕  𝑇2 
 

Brownian diffusion coefficient 
D

B 

 

The velocity vector 

 

𝑉 
 

Thermophoretic diffusion coefficient 
D

T 

Greek symbols  

 
Electrical field  E 

The nanoparticles phenomena  𝜙  
 

Eckert number, defined by Eq. (38) 
E

c 

The dissipation function  Φ 
 

The external force F 

The dimensionless concentration 𝜙 
 

Gravitational acceleration  G 

The dimensionless temperature  𝜃 
 

Local temperature Grashof number,  G
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defined by Eq. (38) r 

Gradient operator ∇ 
 

The magnetic field  𝐻 

Laplacian operator ∇2 
 

The currentdensity,𝐽 = 𝜍 𝐸 + 𝜇𝑒𝑉˄𝐻  J 

Deborah number, defined by Eq. (38) 𝛤 
 

Thermal conductivity 𝑘 

Wave number, defined by Eq. (38) 𝛿 
 

Permeability constant 𝑘∗ 

the dynamic viscosity of fluid 𝜇 
 

The mean absorption coefficient 𝜅0  

the magnetic permeability  𝜇𝑒  
 

Thermal diffusion ratio 
k

T 

The kinematic viscosity(
𝜇
𝜌𝑓 ) 𝜈 

 
Lewis number, defined by Eq. (38) 

L

e 

The specific heat capacity at constant pressure  𝑐𝑝  
 

Chemical Reaction order m 

The density of the fluid f  
 

Magnetic field parameter, defined by 

Eq. (38) 
M 

The density of the particle p  
 

Viscosity parameter, defined by Eq. 

(38) 

N

1 

heat capacity of the fluid 
fc)(

  

Brownian motion parameter, defined 

by Eq. (38) 

N

b 

effective heat capacity of the nanoparticle material 
pc)(

  
Dufournumbe, defined by Eq. (38) 

N

d 

Electrical conductivity of the fluid 𝜍 
 

The thermophoresis parameter, defined 

by Eq. (38) 

N

t 

Stefan Boltizman constant 𝜍0 
 

The  fluid pressure 
P

  

 The Cauchy Stress tensor  𝜏 
 

Prandtl number, defined by Eq. (38) 
P

r 

The material coefficients, defined  

by Eq. (38) 
𝜆1,  𝜆2  The radiative heat flux q 

Volumetric thermal and solute expansion coefficients 

of the base fluid    
𝛼𝑇  , 𝛼𝐶  

 

Chemical reaction parameter, defined 

by  

Eq. (38) 
𝑅𝑐  

1. INTRODUCTION 

The analysis of flow dynamics of a fluid in a circular tube induced by a travelling wave on its wall has 

numerous applications in various branches of science. The word peristaltic stems from the Greek 

word peristaltikos which means clasping and compressing. The peristaltic transport is a physical 

mechanism that occurs due to the action of a progressive wave which propagates along thelength of a 

distensible tube containing fluid. The peristaltic mechanism is nature’s way of moving the content 

within hollow structures by successive contraction on their muscular fibers. This mechanism is 

responsible for transport of biological fluids such as urine in the ureter, chime in gastro-intestinal 

tract, semen in the vas deferens and ovum in the female fallopian tube [1]. The application of 

peristaltic motion as a mean of transporting fluid has aroused interested in engineering fields. Latham 

[2] was probably the first to study the mechanism of peristaltic pumping in his M. S. Thesis. Several 

researches have analyzed the phenomenon of peristaltic transport under various assumptions. Haroun 

[3] studied the effect of a third-order fluid on the peristaltic transport in an asymmetric channel. 

Eldabe et al. [4] analyzed the incompressible flow of electrically conducting biviscosity fluid through 

an axisymmetric non-uniform tube with a sinusoidal wave under the considerations of long 

wavelength and low Reynolds number.  

Due to complexity of fluids, several models mainly based on empirical observations have been 

proposed for non-Newtonian fluids. Amongst these, there is a particular class of fluids, called 

viscoelastic fluid, which has specially attracted the attention of numerous researchers for varying 

reasons. The rheologists have been able to provide a theoretical foundation in the form of a 

constitutive equation which can in principle, have any ‘order’. For applied mathematicians and 

computer scientists the challenge comes from a different quarter. The constitutive equations of even 

the simplest viscoelastic fluids, namely second grade fluids are such that the differential equations 
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describing the motion have, in general, their order higher than those describing the motion of the 

Newtonian fluids but apparently there is no corresponding increase in the number of boundary 

conditions. Applied mathematicians and computer scientists are thus forced with the so-called ill-

posed boundary value problems which, in theory, would have a family of infinitely many solutions 

[5].  

Non-Newtonian nanofluids are widely encountered in many industrial and technology applications, 

for example, melts of polymers, biological solutions, paints, asphalts and glues etc. Nanofluids appear 

to have the potential to significantly increase heat transfer rates in a variety of areas such as industrial 

cooling applications, nuclear reactors, transportation industry, micro-electromechanical systems, heat 

exchangers, chemical catalytic reactors, fiber and granular insulations, packed beds, petroleum 

reservoirs and nuclear waste repositories and biomedical applications [6].Choi [7] is the first to use 

the term nano-fluid, who proposed that nanometer sized metallic particles can be suspended in 

industrial heat transfer fluids. Therefore, a nano-fluid is a suspension of nano-particles (metallic, non-

metallic, or polymeric) in a conventional base fluid which enhances its heat transfer characteristics. 

Enhanced thermal properties of nano-fluids enable them to use in automotive industry, power plants, 

cooling systems, computers, etc [8].  

In recent years, biomagnetic fluid dynamic is an interesting area of research. This is due to its 

extensive applications in bioengineering and medical sciences. Examples include the development of 

magnetic devices for cell separation, targeted transport of drugs using magnetic particles as drug 

carriers, magnetic wound or cancer tumor treatment causing magnetic hyperthermia, reduction of 

bleeding during surgeries or provocation of occlusion of the feeding vessels of cancer tumors and 

development of magnetic tracers [9].  

Thermal radiation has a significant role in the overall surface heat transfer when the convection heat 

transfer coefficient is small. Thermal radiation effect on mixed convection from vertical surface in a 

porous medium was studied by Bakier[10]. He applied fourth-order Runge-Kutta scheme to solve the 

governing equations. Effect of MHD flow with mixed convection from radiative vertical isothermal 

surface embedded in a porous medium was numerically analyzed by Damseh [11]. He used an 

implicit iterative tri-diagonal finite difference method in order to solve the dimensionless boundary-

layer equations. It is well known that the effect of thermal radiation is important in space technology 

and high temperature processes. Thermal radiation also plays an important role in controlling heat 

transfer process in polymer processing industry. The effect of radiation on heat transfer problems have 

been studied by Hossain and Takhar [12]. Zahmatkesh [13] has found that the presence of thermal 

radiation makes temperature distribution nearly uniform in the vertical sections inside the enclosure 

and causes the streamlines to be nearly parallel with the vertical walls. Mohsen et al. [14] studied the 

effect of thermal radiation on magneto-hydrodynamics nanofluid flow and heat transfer by means of 

two phase model. 

Heat and mass transfer problems with chemical reaction are significant in many processes such as 

drying, evaporations at the surface of a water body, geothermal reservoirs, thermal insulation, 

enhanced oil recovery, cooling of nuclear reactors and the flow in a desert cooler. This type of flows 

have many applications in industries. Many practical diffusive operations involve the molecular 

diffusion of species in the presence of chemical reaction within or at the boundary. Heat and mass 

transfer effects are also encountered in the chemical industry, in reservoirs, in thermal recovery 

processes and in the study of hot salty springs in the sea [15]. Vajravelu et al. [16] investigated heat 

and mass transfer properties of three-layer fluid flow in which nano-fluid layer is squeezed between 

two clear viscous fluid. Farooq et al. [17] studied heat and mass transfer of two-layer flows of third-

grade nano-fluids in a vertical channel. Abou-zeid et al. [18] obtained numerical solutions and Global 

error estimation of natural convection effects on gliding motion of bacteria on a power-law nano-

slime through a non-Darcy porous medium. El-Dabe et al. [19] investigated magneto-hydrodynamic 

non-Newtonian nano-fluid flow over a stretching sheet through a non-Darcy porous medium with 

radiation and chemical reaction.Shaaban et al. [20] studied the effects of heat and mass transfer on 

MHD peristaltic flow of a non-Newtonian fluid through a porous medium between two coaxial 

cylinders. 

The objective of this work is to investigate the numerical solution by using Explicit Finite Difference 

method [21] for the system of non-linear differential equations which arises from the two- 
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dimensional flow of a magneto-hydrodynamic  third-order Nano-fluid with heat and mass transfer in a 

circular cylindrical tube having two walls that are transversely displaced by an infinite, harmonic 

traveling wave of large wave length.We obtained the distributions of the stream function, the velocity, 

the temperature, the concentration, and the Nanoparticles. Numerical results are found for different 

values of various non-dimensional parameters. The results are shown graphically and discussed in 

detail. Also, the global error estimation for the error propagation is obtained by Zadunaisky technique 

[22].  

2. FLUID MODEL 

By using arguments of modern continuum thermodynamics, the model for a fluid of third grade has 

been derived by Fosdick and Rajagopal [23]. They show that the constitutive relation for the stress 

tensor for an incompressible, third-order, homogeneous fluid has the form,  

𝜏 = −𝑃𝐼 + 𝑆,(1) 

𝑆 = 𝜇 𝐴1 + 𝛼1𝐴2 + 𝛼2𝐴1

2
+ 𝛽  𝑡𝑟 𝐴1

2
 𝐴1      .                                                                                     (2) 

     Here, −𝑃𝐼 is the indeterminate part of the stress due to the constraint of incompressibility, 𝐴𝑛  are 

the Rivlin-Ericksen tensors, defined by  

𝐴1 =  ∇𝑉 +  ∇𝑉 
𝑇

              ,  

𝐴𝑛 =
𝑑𝐴𝑛−1

𝑑 𝑡
+ 𝐴𝑛−1 ∇𝑉 +  ∇𝑉 

𝑇
𝐴𝑛−1        ,          𝑛 > 1  .                                                                  (3) 

     Where, 𝑉is the velocity and 
𝑑

𝑑 𝑡
 is the material time derivative. The clausius-Duhem inequality and 

the requirement that the free energy be a minimum in equilibrium imposes the following constraints 

on the dynamic viscosity 𝜇, the normal stress coefficients 𝛼1 and 𝛼2, and the coefficient 𝛽,  

𝜇 ≥ 0    , 𝛼1 ≥ 0   ,   𝛽 ≥ 0   ,     𝛼1 + 𝛼2  ≤  24𝜇𝛽       .                                                                    (4) 

     Further remarks of third-order fluid models may be found in Dunn and Rajagopal [24]. 

3. MATHEMATICAL FORMULATION 

Consider a two-dimensional infinite tube of uniform width 2𝑛 filled with an incompressible non-

Newtonian nano-fluid obeying third-order model through a porous medium with heat and mass 

transfer of solar radiation with chemical reaction. A uniform magnetic field intensity 𝐻0 is imposed 

and acting along the 𝑌 −axis. By using cartesian coordinates, the tube walls are parallel to the 

𝑋 −axis and located at 𝑌 = ±𝑛.  

     We assume that an infinite train of sinusoidal waves progresses with velocity c along the walls in 

the 𝑋 − direction.  

      The geometry of the wall surface is defined as  

𝑕 𝑥  , 𝑡 = 𝑛 + 𝑏 sin  
2𝜋

𝜆
 𝑥 − 𝑐 𝑡            .                                                                                          (5) 

    Where, b is the amplitude and λ is the wavelength. We also assume that there is no motion of the 

wall in the longitudinal direction.  

4. BASIC EQUATIONS 

The basic equations governing the flow of an incompressible Nano-fluid are the following equations 

[25, 26],  

The continuity equation  

∇. 𝑉 = 0,                                                                                                                                                (6) 

The momentum equation  

𝜌𝑓
𝑑𝑉

𝑑𝑡
=  ∇. 𝜏 + 𝜇𝑒  𝐽 ˄𝐻 −

𝜇

𝑘∗
𝑉 + 𝐹,(7) 
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The energy equation  

 𝜌𝑐𝑝 𝑓  
𝑑𝑇

𝑑𝑡
 = 𝜅 ∇2𝑇 + Φ + ∇. 𝑞 +  𝜌𝑐𝑝 𝑝  𝐷𝐵 ∇𝑇. ∇𝜙  +

𝐷𝑇

𝑇1

 ∇𝑇 2  

                                                              +
𝜌𝑓𝐷𝐵𝜅𝑇

𝐶𝑠
 ∇2𝐶,  (8)          

The concentration equation  

𝑑𝐶

𝑑𝑡
= 𝐷𝐵  ∇2𝐶 +

𝐷𝑇𝜅𝑇

𝑇1
 ∇2𝑇 − 𝐴 𝐶 − 𝐶2 

𝑚 ,                                                                                           (9)   

The nanoparticles concentration equation       

𝑑𝜙 

𝑑𝑡
= 𝐷𝐵∇

2𝜙 +
𝐷𝑇

𝑇2
∇2𝑇                                                                                                                         (10) 

     For unsteady two-dimensional flows, velocity components can be written as follows,  

𝑉 =  𝑈 𝑋, 𝑌, 𝑡  , 𝑉 𝑋, 𝑌, 𝑡  , 0                                                                                                           (11) 

     Also, the temperature, the concentration, and the nanoparticles functions can be written as follows,  

𝑇 = 𝑇 𝑋, 𝑌, 𝑡       ,       𝐶 = 𝐶 𝑋, 𝑌, 𝑡    ,    𝜙  𝑋, 𝑌, 𝑡   .                                                                        (12) 

     The equations (6), (7) and the constitutive relations (1), (2), and (3) take the following form:- 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0          ,(13) 

𝜌𝑓  
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑋
+ 𝑉

𝜕

𝜕𝑌
 𝑈 = −

𝜕𝑃

𝜕𝑋
+ 𝜇  

𝜕2

𝜕𝑋
2 +

𝜕2

𝜕𝑌
2 𝑈 −

𝜇

𝑘∗
𝑈 − 𝜍𝜇𝑒

2𝐻0
2𝑈 +

𝜕𝑆
𝑋𝑋

𝜕𝑋
+

𝜕𝑆
𝑋𝑌

𝜕𝑌
+

                                    𝜌𝑓𝑔𝛼𝑇 𝑇 − 𝑇2 + 𝜌𝑓𝑔𝛼𝐶 𝐶 − 𝐶2         ,                            (14)  

𝜌𝑓  
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑋
+ 𝑉

𝜕

𝜕𝑌
 𝑉 = −

𝜕𝑃

𝜕𝑌
+ 𝜇  

𝜕2

𝜕𝑋
2 +

𝜕2

𝜕𝑌
2 𝑉 −

𝜇

𝑘∗
𝑉 +

𝜕𝑆𝑋𝑌
𝜕𝑋

+
𝜕𝑆𝑌𝑌
𝜕𝑌

   ,                                    (15) 

𝑆𝑋𝑋 =

2𝜇
𝜕𝑈

𝜕𝑋
+ 4 𝛼1 + 𝛼2  

𝜕𝑈

𝜕𝑋
 

2

+ 2𝛼1
𝜕𝑈

𝜕𝑌
 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 + 𝛼2  

𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 

2

+

                                            2𝛽
𝜕𝑈

𝜕𝑋
 4 

𝜕𝑈

𝜕𝑋
 

2

+ 4 
𝜕𝑉

𝜕𝑌
 

2

+ 2 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 

2

       ,                                        (16) 

𝑆𝑋𝑌 = 𝑆𝑌𝑋 = 𝜇  
𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
 + 2𝛼1  

𝜕𝑈

𝜕𝑋

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌

𝜕𝑉

𝜕𝑌
 +  𝛼1 + 2𝛼2  

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
  

 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 + 𝛽  4  

𝜕𝑈

𝜕𝑋
 

2

+ 4 
𝜕𝑉

𝜕𝑌
 

2

+ 2 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 

2

  
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 ,                                                     (17) 

𝑆𝑌𝑌 =

2𝜇
𝜕𝑉

𝜕𝑌
+ 2𝛼1

𝜕𝑉

𝜕𝑋
 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 + 4 𝛼1 + 𝛼2  

𝜕𝑉

𝜕𝑌
 

2

+ 𝛼2  
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 

2

+

                                        2𝛽
𝜕𝑉

𝜕𝑌
 4  

𝜕𝑈

𝜕𝑋
 

2

+ 4 
𝜕𝑉

𝜕𝑌
 

2

+ 2 
𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 

2

       .                                            (18) 

     The dissipation function 𝛷 can be written as follows  

𝛷 = 𝜏𝑖𝑗
𝜕𝑉𝑖

𝜕𝑋𝑗
          ,                                                                                                                               (19) 

𝛷 = 𝑆𝑋𝑋
𝜕𝑈

𝜕𝑋
+ 𝑆𝑋𝑌  

𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 + 𝑆𝑌𝑌

𝜕𝑉

𝜕𝑌
      ,                                                                                       (20) 

     Also, by using Rosselant approximation [27] we have,  

𝑞 =
4𝜍0

3𝜅0

𝜕𝑇4

𝜕𝑌
        ,                                                                                                                                  (21) 
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     We assume that the temperature differences within the flow are sufficiently small such that 𝑇4 may 

be expressed as a linear function of temperature. This is accomplished by expanding 𝑇4 in a Taylor 

series about 𝑇2, and neglecting higher-order terms [28], one gets,  

𝑇4 ≅ 4𝑇2
3𝑇 − 3𝑇2

4      .                                                                                                                        (22) 

     Then, equations (8), (9), and (10) can be written as follows:-  

 𝜌𝑐𝑝 𝑓  
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
 = 𝜅  

𝜕2𝑇

𝜕𝑋
2 +

𝜕2𝑇

𝜕𝑌
2 +

16𝜍0

3𝜅0
𝑇2

3 𝜕2𝑇

𝜕𝑌
2 + 𝑆𝑋𝑋

𝜕𝑈

𝜕𝑋
+ 𝑆𝑋𝑌  

𝜕𝑉

𝜕𝑋
+

𝜕𝑈

𝜕𝑌
 + 𝑆𝑌𝑌

𝜕𝑉

𝜕𝑌
+

 𝜌𝑐𝑝 𝑝  
𝐷𝐵  

𝜕𝑇

𝜕𝑋
.
𝜕𝜙 

𝜕𝑋
+

𝜕𝑇

𝜕𝑌

𝜕𝜙 

𝜕𝑌
 +

𝐷𝑇

𝑇1
  

𝜕𝑇

𝜕𝑋
 

2
+  

𝜕𝑇

𝜕𝑌
 

2
   +

𝜌𝑓𝐷𝐵𝜅𝑇

𝐶𝑠
 
𝜕2𝐶

𝜕𝑋
2 +

𝜕2𝐶

𝜕𝑌
2     ,                              (23) 

 
𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑋
+ 𝑉

𝜕𝐶

𝜕𝑌
 = 𝐷𝐵  

𝜕2𝐶

𝜕𝑋
2 +

𝜕2𝐶

𝜕𝑌
2 +

𝐷𝑇𝜅𝑇

𝑇1
 
𝜕2𝑇

𝜕𝑋
2 +

𝜕2𝑇

𝜕𝑌
2 − 𝐴 𝐶 − 𝐶2 

𝑚       ,                                (24) 

 
𝜕𝜙 

𝜕𝑡
+ 𝑈

𝜕𝜙 

𝜕𝑋
+ 𝑉

𝜕𝜙 

𝜕𝑌
 = 𝐷𝐵  

𝜕2𝜙 

𝜕𝑋
2 +

𝜕2𝜙 

𝜕𝑌
2 +

𝐷𝑇

𝑇2
 
𝜕2𝑇

𝜕𝑋
2 +

𝜕2𝑇

𝜕𝑌
2              .                                                    (25) 

     In the fixed coordinate system  𝑋, 𝑌 , the motion is unsteady because of the moving boundary. 

However, if observed in a coordinate system  𝑥, 𝑦  moving with the speed 𝑐, it can be treated as 

steady because the boundary shape appears to be stationary.  

      The transformation between the two frames is given by  

𝑥 = 𝑋 − 𝑐 𝑡      ,                         𝑦 = 𝑌   .                                                                                                (26) 

      The velocities in the fixed and moving frames are related by  

𝑢 = 𝑈 − 𝑐           ,                          𝑣 = 𝑉   .                                                                                             (27) 

      Where, 𝑢, 𝑣 are components of the velocity in the moving coordinate system.  

And, in order to simplify the governing equations of the motion, we may introduce the following 

dimensionless transformations:-  

 

𝑥 =
2𝜋

𝜆
𝑥        ,        𝑦 =

𝑦

𝑛
       ,       𝑢 =

𝑢

𝑐
       ,     𝑣 =

𝑣

𝑐
     ,   

𝑠 =
𝑛

𝜋𝑐
𝑠         ,         𝑝 =

2 𝜋 𝑛2

𝜆 𝜇 + 𝜂 𝑐
𝑝            ,          𝑕 =

𝑕

𝑛
  ,  

𝜃 =
𝑇−𝑇2

𝑇1−𝑇2
         ,       𝜙 =

𝐶−𝐶2

𝐶1−𝐶2
      ,        𝑆 =

𝜙 −𝜙 2

𝜙 1−𝜙 2
   .                                                                           (28) 

 

     Substituting by equations (26), (27), and (28) into equations (13) – (18), and (23) – (25) we obtain 

the following non-dimensionless equations:-  

𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  ,                                                                                                                                   (29) 

𝑅𝑒  𝛿 𝑢 
𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
 = − 1 + 𝑁1 

𝜕𝑝

𝜕𝑥
+  𝛿2 𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 −
1

𝐷𝑎
 𝑢 −𝑀 𝑢 + 𝛿

𝜕𝑠𝑥𝑥

𝜕𝑥
+

𝜕𝑠𝑥𝑦

𝜕𝑦
+

                                                    𝐺𝑟 𝜃 + 𝐵𝑟 𝜙        ,                                                                                  (30) 

𝛿 𝑅𝑒  𝛿 𝑢 
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 = − 1 + 𝑁1 

𝜕𝑝

𝜕𝑦
+ 𝛿  𝛿2 𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 −
𝛿

𝐷𝑎
 𝑣 + 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑠𝑦𝑦

𝜕𝑦
  ,                 (31) 

𝑠𝑥𝑥 =

2𝛿
𝜕𝑢

𝜕𝑥
+ 4 𝜆1 + 𝜆2 𝛿

2  
𝜕𝑢

𝜕𝑥
 

2
+ 2𝜆1

𝜕𝑢

𝜕𝑦
 𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 + 𝜆2  𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

2
+

                         2𝛤𝛿
𝜕𝑢

𝜕𝑥
 4𝛿2  

𝜕𝑢

𝜕𝑥
 

2
+ 4 

𝜕𝑣

𝜕𝑦
 

2
+ 2 𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

2
       ,                                                  (32) 

𝑠𝑥𝑦 = 𝑠𝑦𝑥 =   𝛿
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 + 2𝜆1  𝛿

2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
 +  𝜆1 + 2𝜆2  𝛿

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
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 𝛿
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 + 𝛤  4𝛿2  

𝜕𝑢

𝜕𝑥
 

2
+ 4 

𝜕𝑣

𝜕𝑦
 

2
+ 2 𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

2
  𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
  ,(33) 

𝑠𝑦𝑦 = 2
𝜕𝑣

𝜕𝑦
+ 2𝜆1𝛿

𝜕𝑣

𝜕𝑥
 𝛿

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 + 4 𝜆1 + 𝜆2  

𝜕𝑣

𝜕𝑦
 

2

+ 

                           𝜆2  𝛿
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

2
+  2𝛤

𝜕𝑣

𝜕𝑦
 4𝛿2  

𝜕𝑢

𝜕𝑥
 

2
+ 4 

𝜕𝑣

𝜕𝑦
 

2
+ 2 𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 

2
 .                         (34) 

𝑅𝑒  𝛿𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
 =

1

𝑃𝑟
 𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 +
4

3𝑅𝑛

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 𝛿 𝑠𝑥𝑥
𝜕𝑢

𝜕𝑥
+ 𝐸𝑐 𝑠𝑥𝑦  𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 + 𝐸𝑐 𝑠𝑦𝑦

𝜕𝑣

𝜕𝑦
+

 𝑁𝑏  𝛿2 𝜕𝜃

𝜕𝑥
∙
𝜕𝑆

𝜕𝑥
+

𝜕𝜃

𝜕𝑦
∙
𝜕𝑆

𝜕𝑦
 + 𝑁𝑡  𝛿2  

𝜕𝜃

𝜕𝑥
 

2
+  

𝜕𝜃

𝜕𝑦
 

2
   + 𝑁𝑑  𝛿2 𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2     ,                            (35) 

𝑅𝑒  𝛿𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
 =

1

𝐿𝑒
 𝛿2 𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 + 𝑆𝑟  𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 − 𝑅𝑐 𝜙 𝑚       ,                                  (36) 

𝑅𝑒  𝛿𝑢
𝜕𝑆

𝜕𝑥
+ 𝑣

𝜕𝑆

𝜕𝑦
 = 𝑁𝑏  𝛿2 𝜕2𝑆

𝜕𝑥2 +
𝜕2𝑆

𝜕𝑦2 + 𝑁𝑡  𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2           .                                              (37) 

Where, the dimensionless parameters are defined by:- 

𝛿 =
2𝜋𝑛

𝜆
,     𝑅𝑒 =

𝜌𝑐𝑛

𝜇
,𝑁1 =

𝜂

𝜇
, 𝐷𝑎 =

𝑘∗

𝑛2,𝑀 =
𝜍𝜇𝑒

2𝐻0
2𝑛2

𝜇
 

𝜆1 =
𝛼1𝑐

𝜇  𝑛
     ,    𝜆2 =

𝛼2𝑐

𝜇  𝑛
  ,  𝛤 =

𝛽𝑐2

𝜇𝑛2,  𝐺𝑟 =
𝑔𝑛𝛼𝑇 𝑇1−𝑇2 

𝑐2 , 𝐵𝑟 =
𝑔𝑛𝛼𝐶 𝐶1−𝐶2 

𝑐2  

𝑃𝑟 =
𝜈 𝜌𝑐𝑝  𝑓

𝜅
 ,  𝑅𝑛 =

 𝜌𝑐𝑝  𝑓
𝜅0𝜈

4𝜍0𝑇2
3  ,  𝐸𝑐 =

𝑐2

𝑐𝑝  𝑇1−𝑇2 
, 𝑁𝑑 =

𝐷𝐵𝜅𝑇 𝐶1−𝐶2 

𝐶𝑠𝑐𝑝  𝜈   𝑇1−𝑇2 
    ,𝑁𝑏 =

𝐷𝐵 𝜙 1−𝜙 2 

𝜈
 

𝑁𝑡 =
𝐷𝑇  𝑇1−𝑇2 

𝑇1  𝜈
    ,    𝐿𝑒 =

𝜈

𝐷𝐵
    ,     𝑆𝑟 =

𝐷𝑇  𝜅𝑇 𝑇1−𝑇2 

𝑇1   𝜈  𝐶1−𝐶2 
    ,      𝑅𝑐 =

𝑛2𝐴 𝐶1−𝐶2 
𝑚−1

𝜈
                              (38) 

     Equation (29) allows the introducing of the dimensionless stream function 𝜓  𝑥, 𝑦  in terms of  

𝑢 =
𝜕𝜓

𝜕𝑦
        ,     𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
    .                                                                                                             (39) 

     Then, we carry out our investigation on the basis that the dimensionless wave number is small, that 

is,  

𝛿 << 1,                                                                                                                                               (40) 

which corresponds to the long-wavelength approximation [29]. Thus, to lowest order in 𝛿, equations 

(30 – 37) give,  

 1 + 𝑁1 
𝜕𝑝

𝜕𝑥
=  

𝜕3𝜓

𝜕𝑦3 −  
1

𝐷𝑎
+ 𝑀 

𝜕𝜓

𝜕𝑦
+

𝜕𝑠𝑥𝑦

𝜕𝑦
+ 𝐺𝑟 𝜃 + 𝐵𝑟 𝜙    ,                                                        (41) 

𝜕𝑝

𝜕𝑦
= 0 ,                                                                                                                                                (42)  

𝑠𝑥𝑥 =  2𝜆1 + 𝜆2  
𝜕2𝜓

𝜕𝑦2 
2

        ,                                                                                                           (43) 

𝑠𝑥𝑦 = 𝑠𝑦𝑥 =   
𝜕2𝜓

𝜕𝑦2 + 2𝛤  
𝜕2𝜓

𝜕𝑦2 
3

          ,                                                                                            (44) 

𝑠𝑦𝑦 =  𝜆2  
𝜕2𝜓

𝜕𝑦2 
2

,(45) 

 
1

𝑃𝑟
+

4

3𝑅𝑛
 
𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 𝑠𝑥𝑦  
𝜕2𝜓

𝜕𝑦2 + 𝑁𝑏  
𝜕𝜃

𝜕𝑦
∙
𝜕𝑆

𝜕𝑦
 + 𝑁𝑡  

𝜕𝜃

𝜕𝑦
 

2
 + 𝑁𝑑  

𝜕2𝜙

𝜕𝑦2 = 0    ,                            (46)   

1

𝐿𝑒
 
𝜕2𝜙

𝜕𝑦2 + 𝑆𝑟  
𝜕2𝜃

𝜕𝑦2 − 𝑅𝑐 𝜙 𝑚 = 0      ,                                                                                            (47) 
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𝑁𝑏  
𝜕2𝑆

𝜕𝑦2 + 𝑁𝑡  
𝜕2𝜃

𝜕𝑦2 = 0            .                                                                                                      (48) 

Boundary conditions in dimensionless form are:-  

       For the stream function in the moving frame are,  

 
𝜓 = 0    ,     𝑏𝑦 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 

𝜕2𝜓

𝜕𝑦2 = 0      ,      (𝑏𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)
 on the centerline 𝑦 = 0 , 

 
𝜕𝜓

𝜕𝑦
= −1     ,    𝑛𝑜 𝑠𝑙𝑖𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝜓 = 𝐹     .                                             
        at the wall 𝑦 = 𝑕  . 

     Where, F  is the total flux number. We also note that hrepresents the dimensionless form of the 

surface of the peristaltic wall. 

𝑕 𝑥 = 1 + 𝜒 𝑠𝑖𝑛 𝑥    .                                                                                                                        (49) 

     Where,  𝜒 =
𝑏

𝑛
  (is the amplitude ratio or the occlusion) 

     For the temperature, the concentration, and the nanoparticles are,  

𝜃 = 1  ,     𝜙 = 1  ,       𝑆 = 1      ,           𝑎𝑡  𝑦 = 0  ,   

𝜃 = 0  ,     𝜙 = 0  ,       𝑆 = 0      ,           𝑎𝑡  𝑦 = 𝑕   .                                                                             (50) 

Then the dimensionless boundary conditions can be written as  

𝜓 = 0   ,   
𝜕2𝜓

𝜕𝑦2
= 0    , 𝜃 = 1  ,     𝜙 = 1  ,       𝑆 = 1      ,           𝑎𝑡  𝑦 = 0  ,   

𝜓 = 𝐹   ,
𝜕𝜓

𝜕𝑦
= −1    , 𝜃 = 0  ,     𝜙 = 0  ,       𝑆 = 0      ,           𝑎𝑡  𝑦 = 𝑕   .                                        (51) 

    Substituting (44) into (41) and (46) and using (42) we finally have,  

𝜓 4 =
 

1

𝐷𝑎
+𝑀 𝜓 ′′ −𝐺𝑟  𝜃 ′−𝐵𝑟 𝜙 ′−12 𝛤𝜓 ′′ 𝜓 ′′′ 2

 2+6𝛤 𝜓 ′′ 2
 

         , 

𝜃′′ =
−𝐸𝑐𝜓 ′′ 2

−2𝐸𝑐  𝛤 𝜓 ′′ 4
−𝑁𝑑 𝜙 ′′ −𝑁𝑏 𝜃 ′ 𝑆 ′−𝑁𝑡 𝜃 ′

2

 
1

𝑃𝑟
+

4

3𝑅𝑛
 

 , 

𝜙′′ = −𝐿𝑒 𝑆𝑟 𝜃′′ + 𝐿𝑒 𝑅𝑐 𝜙𝑚
, 

𝑆′′ = −
𝑁𝑡

𝑁𝑏
𝜃′′ .                                                                                                                               (52) 

The system of non-linear ordinary differential (52) together with the boundary conditions (51), will be 

solved numerically by using the explicit finite-difference method. And, we computed the global error 

for the solutions of the problem. 

5. NUMERICAL SOLUTION 

The equations (52) can be written after applied explicit finite difference schemes [21] as: 

 
2𝜓 𝑖+2 −9𝜓 𝑖+1 +16𝜓 𝑖 −14𝜓 𝑖−1 +6𝜓 𝑖−2 −𝜓 𝑖−3 

𝑕4   2 + 6 𝛤  
𝜓 𝑖+1 −2𝜓 𝑖 +𝜓 𝑖−1 

𝑕2  
2
 −   𝑀 +

1𝐷𝑎𝜓𝑖+1−2𝜓𝑖+𝜓𝑖−1𝑕2−𝐺𝑟𝜃𝑖+1−𝜃𝑖−12𝑕−𝐵𝑟𝜙𝑖+1−𝜙𝑖−12𝑕−12 
𝛤𝜓𝑖+1−2𝜓𝑖+𝜓𝑖−1𝑕2𝜓𝑖+2−3𝜓𝑖+1+3𝜓𝑖−𝜓𝑖−1𝑕32=0, 

 
1

𝑃𝑟
+

4

3𝑅𝑛
  

𝜃 𝑖+1 −2𝜃 𝑖 +𝜃 𝑖−1 

𝑕2  + 𝐸𝑐  
𝜓 𝑖+1 −2𝜓 𝑖 +𝜓 𝑖−1 

𝑕2  
2

+ 2𝐸𝑐 𝛤  
𝜓 𝑖+1 −2𝜓 𝑖 +𝜓 𝑖−1 

𝑕2  
4

+

𝑁𝑑  
𝜙 𝑖+1 −2𝜙 𝑖 +𝜙 𝑖−1 

𝑕2  + 𝑁𝑏  
𝜃 𝑖+1 −𝜃 𝑖−1 

2𝑕
  

𝑆 𝑖+1 −𝑆 𝑖−1 

2𝑕
 + 𝑁𝑡  

𝜃 𝑖+1 −𝜃 𝑖−1 

2𝑕
 

2
= 0      , 
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𝜙 𝑖+1 −2𝜙 𝑖 +𝜙 𝑖−1 

𝑕2  + 𝐿𝑒 𝑆𝑟  
𝜃 𝑖+1 −2𝜃 𝑖 +𝜃 𝑖−1 

𝑕2  − 𝐿𝑒 𝑅𝑐  𝜙 𝑖  𝑚 = 0      , 

 
𝑆 𝑖+1 −2𝑆 𝑖 +𝑆 𝑖−1 

𝑕2  + 𝑁𝑡
𝑁𝑏

 
𝜃 𝑖+1 −2𝜃 𝑖 +𝜃 𝑖−1 

𝑕2  = 0    ,                                                                     (53) 

Where the index 𝑖 refers to 𝑦 and the ∆ 𝑦 = 𝑕 = 0.04 . According to the boundary conditions (51) we 

can solved equations (53) numerically, then a Newtonian iteration method continues until either of 

goals specified by accuracy goal or precision goal is achieved.  

6. ESTIMATION OF THE GLOBAL ERROR 

We used Zadunaisky technique [22] for calculating the global error for the solutions of the problem. 

We calculate an estimation of the global error from the formulas, 

𝑒𝑛 = 𝑓𝑛 − 𝑓 𝑥𝑛 = 𝑓𝑛 − 𝑃 𝑥𝑛    ,      𝑛 = 0,1,2,……… ,25  .                                                           (54) 

In this relation, 𝑓𝑛  is the approximate solutions of the new problem (the pseudo-problem) at the point  

𝑥𝑛   , and  𝑓 𝑥𝑛  is the exact solutions of pseudo-problem at 𝑥𝑛  . 

The values of global error for the solutions of the problem which solved by the explicit finite 

difference method are shown in ( tab.1 ). The error in (tab. 1) based on using 26 points to find 

interpolating polynomials  𝑃𝑖 𝑥  of degree 25. In order to achieve the above task, we used the 

Mathematica package. 

Table 1. The global error by using finite difference technique 

y u =Y2 error (e2n)  =Y5 error (e5n) 

 
 Y7 error (e7n) S=Y9 error (e9n) 

0 -2.37728 7.29673E-04 1.00E+00 0.00E+00 
1.00E+00 

0.00E+00 1.00E+00 0.00E+00 

 0.08 -2.37381 2.89037E-04 0.942545 2.13292E-04 
0.916916 

2.47102E-05 0.915491 2.34465E-04 

0.16 -2.36041 6.39575E-04 0.883307 4.12111E-04 
0.834279 

4.59696E-05 0.831339 1.37629E-03 

0.24 -2.33457 1.41259E-03 0.822206 5.87384E-04 
0.752052 

6.27746E-05 0.747559 3.26827E-03 

0.32 -2.29477 1.74905E-03 0.759054 7.26556E-04 
0.670211 

7.38514E-05 0.664189 5.73609E-03 

0.4 -2.2394 1.62674E-03 0.69352 8.12272E-04 
0.588752 

7.75766E-05 0.581296 8.58304E-03 

0.48 -2.16637 1.12886E-03 0.625087 8.24749E-04 
0.507695 

7.22617E-05 0.498983 1.15732E-02 

0.56 -2.07304 3.78352E-04 0.552965 7.45725E-04 
0.427089 

5.66182E-05 0.417407 1.4408E-02 

0.64 -1.95602 4.79557E-04 0.475984 5.64493E-04 
0.347028 

3.04824E-05 0.336803 1.6695E-02 

0.72 -1.81115 1.27505E-03 0.392423 2.88096E-04 
0.267663 

3.95057E-06 0.257515 1.79035E-02 

0.8 -1.6333 1.80269E-03 0.299767 4.04455E-05 
0.189231 

3.99397E-05 0.180047 1.73019E-02 

0.88 -1.41622 1.80209E-03 0.194348 3.0874E-04 
0.112087 

6.23851E-05 0.10513 1.38654E-02 

0.96 -1.15231 9.21908E-04 0.0708377 2.72493E-04 
0.0367567 

4.16893E-05 0.0338325 6.12791E-03 

1 -1.00E+00 0.00E+00 0.00E+00 0.00E+00 
0.00E+00 

0.00E+00 0.00E+00 0.00E+00 

Note: this table contains the values of the dimensionless physical quantities, the velocity  u, the temperature, 

the concentration , and the nano-particle concentration S at the values of the dimensionless distance y, Also, 

this table contains the values of the global error e2n of u, the global error e5n of ,  the global error e7n of , and 

the global error e9n of  S, by using finite difference technique. 

7. NUMERICAL RESULTS AND DISCUSSION  

In this paper we generalized the problem ofa magneto-hydrodynamic  third-order Nano-fluid with 

heat and mass transfer in a circular cylindrical tube having two walls that are transversely displaced 

by an infinite, harmonic traveling wave of large wave length. The system of non-linear ordinary 

differential equations (52) with the boundary conditions (51) was solved numerically by using an 

explicit finite difference method. The functions𝜓, 𝑢 , 𝜃, 𝜙, and  𝑆are obtained and illustrated 

graphically as shown in figures (1-17) for different values of the parameters of the problem. We 

studied all parameters of the problem, but we selected some of them to save space. 

Figure (1) shows the distribution of the velocity profile u at different values of local nanoparticle 

Grashofnumber Br. It is clear that, the velocity increases by increasing local nanoparticle  Grashof 
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number Br in the region 0 ≤ 𝑦 ≤ 0.45 and, it returns decrease at 0.45 ≤ 𝑦 ≤ 1. And, we have led to 

the local temperature Grashof number Greffects on the velocity the same effect of local nanoparticle 

Grashofnumber Br on the velocity. 

Figure (2) describes the effect of the Darcy number Da on the stream function. It is noted that, by 

increasing of the Darcy number Da, the stream function decreases. And, we have led to the Darcy 

number Da effects on the temperature the opposite effect of the Darcy number Da on the stream 

function. Figure (3) illustrates the distributions of the velocity profile at different values of the Darcy 

number Da. It is seen that, the velocity decreases by increasing the Darcy number Da in the region 

0 ≤ 𝑦 ≤ 0.55 and, it returns increase at 0.55 ≤ 𝑦 ≤ 1. 
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FIG. 1:  Profiles of the velocity u(y) with various values of Br for a system have the 
particulars 
M=1.5, Da=0.1, Gr=0.1, Ec=0.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, R
c=0.1, m=2.
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FIG. 2:  Profiles of the stream function 𝝍(y) with various values of Da for a system have 
the particulars 
M=1.5, Gr=0.1, Br=0.1, Ec=0.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, Rc
=0.1, m=2. 
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FIG. 3:  Profiles of the velocity u(y) with various values of Da for a system have the 
particulars 
M=1.5, Gr=0.1, Br=0.1, Ec=0.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, Rc
=0.1, m=2. 
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Figure (4) shows the effect of magnetic field parameter M on the stream function. It is clear that, the 

stream function increases by increasing of magnetic field parameter M. And, we have led to magnetic 

field parameter M effects on the temperature the opposite effect of magnetic field parameter M on the 

stream function. Figure (5) illustrates the effect of magnetic field parameter M on the velocity 

profiles. It is clear that, the velocity increases by increasing magnetic field parameter M in the region 

0 ≤ 𝑦 ≤ 0.5 and, it returns decrease at 0.5 ≤ 𝑦 ≤ 1. 

 

 
Figure (6, 7) show the effect of Eckert number Ec on the temperature, and concentration profiles, 

respectively. It is seen that, the temperature increases by increasing of Eckert number Ec, but the 

concentration decreases by increasing of Eckert number Ec.And, we have led to Eckert number Ec 

effects on the nanoparticles the same effect of Eckert number Ec on the concentration.  
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FIG. 4:  Profiles of the stream function 𝝍(y) with various values of M for a system have the 
particulars 
Da=0.1, Gr=0.1, Br=0.1, Ec=0.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, Rc=
0.1, m=2. 
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FIG. 5:  Profiles of the velocity u(y) with various values of M for a system have the 
particulars Da=0.1, Gr=0.1, Br=0.1, Ec=0.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, 
Le=0.5, Sr=0.2, Rc=0.1, m=2.
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FIG. 6:  Profiles of the Temperature θ(y) with various values of Ec for a system have the 
particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, Rc=
0.1, m=2.
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Figure (8) illustrates the effect of Dufour number Nd on the nanoparticles profiles. It is seen that, the 

nanoparticles decreases by increasing of Dufour number Nd. And, we have led to Dufournumber Nd 

effects on the concentration the same effect of Dufour number Nd on the nanoparticles, and the 

opposite effect on the temperature.  

 

Figure (9) obtains the effect of Brownian motion parameter Nb on the concentration profiles. It is 

clear that, the concentration decreases by increasing of Brownian motion parameter Nb. And, we have 

led to Brownian motion parameter Nb effects on the temperature and the nanoparticles the same effect 

of Brownian motion parameter Nb on the concentration.  

 

Figure (10, 11) shows the effect of Thermophoresis parameter Nt on the temperature and the 
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FIG. 7:  Profiles of the Concentration 𝝓(y) with various values of Ec for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Nd=2, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, R
c=0.1, m=2.
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FIG. 8:  Profiles of the Nano-particles S(y) with various values of Nd for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Ec=0.5, Nb=0.5, Nt=0.1, Le=0.5, Sr=0.2, 
Rc=0.1, m=2.  
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FIG. 9:  Profiles of the Concentration 𝝓(y) with various values of Nb for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Ec=0.5, Nd=2, Nt=0.1, Le=0.5, Sr=0.2, Rc
=0.1, m=2.  
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concentration, respectively. It is clear that, the temperature increases by increasing of Thermophoresis 

parameter Nt, but the concentration decreases by increasing of Thermophoresis parameter Nt. And, 

we have led to Thermophoresis parameter Nt effects on the nanoparticles the same effect of 

Thermophoresis parameter Nt on the concentration.  

 

 

Figure (12) shows the effect of Prandtl number Pr on the nanoparticles. It is seen that, the 

nanoparticles decreases by increasing of Prandtl number Pr. And, we have led to Prandtl number Pr 

effects on the concentration the same effect of Prandtl number Pr on the nanoparticles, and the 

opposite effect on the temperature. 
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FIG. 10:  Profiles of the Temperature θ(y) with various values of Nt for a system have the 
particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Ec=0.5, Nd=2, Nb=0.5, Le=0.5, Sr=0.2, R
c=0.1, m=2.
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FIG. 11:  Profiles of the Concentration 𝝓(y) with various values of Nt for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Pr=0.7, Rn=2, Ec=0.5, Nd=2, Nb=0.5, Le=0.5, Sr=0.2, R
c=0.1, m=2.
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FIG. 12:  Profiles of the Nano-particles S(y) with various values of Pr for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Rn=2, Ec=0.5, Nd=2, Nb=0.5, Le=0.5, Sr=0.2, R
c=0.1, m=2. 
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Figure (13, 14) illustrate the effect of radiation parameter Rnon the temperature and nanoparticles, 

respectively. It is shown that, the temperature increases by increasing of radiation parameter Rn, but 

the nanoparticles decreases by increasing of radiation parameter Rn. And, we have led to radiation 

parameter Rn effects on the concentration the same effect of radiation parameter Rn on the 

nanoparticles.  

 

 

Figure (15) shows the effect of Lewis number Le on the concentration. It is clear that, the 

concentration decreases by increasing of Lewis number Le. And, we have led to Lewis number Le 

effects on the nanoparticles the same effect of Lewis number Le on the concentration, and the 

opposite effect on the temperature. 
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FIG. 13:  Profiles of the Temperature θ(y) with various values of Rn for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Pr=0.7, Ec=0.5, Nd=2, Nb=0.5, Le=0.5, Sr=0.2, 
Rc=0.1, m=2.
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FIG. 14:  Profiles of the Nano-particles S(y) with various values of Rn for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Pr=0.7, Ec=0.5, Nd=2, Nb=0.5, Le=0.5, Sr=0.2, 
Rc=0.1, m=2.
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FIG. 15:  Profiles of the Concentration 𝝓(y) with various values of Le for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Pr=0.7, Ec=0.5, Nd=2, Nb=0.5, Rn=2, Sr=0.2, R
c=0.1, m=2.
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Figure (16) shows the effect of Sort number Sr on the nanoparticles. It is seen that, the nanoparticles 

decreases by increasing of Sort number Sr. And, we have led to Sort number Sr effects on the 

concentration the same effect Sort number Sr on the nanoparticles, and the opposite effect on the 

temperature. 

Figure (17) shows the effect of Chemical reaction parameter Rc on the concentration. It is clear that, 

the concentration decreases by increasing of Chemical reaction parameter Rc. And, we have led to 

Chemical reaction parameter Rc effects on the nanoparticles the same effect of Chemical reaction 

parameter Rc on the concentration, and the opposite effect on the temperature. 

 

8. CONCLUSION  

In this work, we have studied a magneto-hydrodynamic  third-order Nano-fluid with heat and mass 

transfer in a circular cylindrical tube having two walls that are transversely displaced by an infinite, 

harmonic traveling wave of large wave length. The governing boundary value problem was solved 

numerically by an Explicit Finite-Difference method. We concentrated our work on obtaining the 

stream function, the velocity, the temperature, the concentration, and the nanoparticlesdistributions 

which are illustrated graphically at different values of the parameters of the problem. Global error 

estimation is also obtained using Zadunaisky technique. We used 26 points to find the interpolating 

polynomial of degree 25 in interval [0,1] and the results are shown in ( tab.1 ). We notice that, the 

error in ( tab.1) is good enough to justify the use of resulting numerical values.  
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FIG. 16:  Profiles of the Nano-particles S(y) with various values of Sr for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Pr=0.7, Ec=0.5, Nd=2, Nb=0.5, Rn=2, Le=0.5, 
Rc=0.1, m=2. 
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FIG. 17:  Profiles of the Concentration 𝝓(y) with various values of Rc for a system have 
the particulars 
Da=0.1, Gr=0.1, Br=0.1, M=1.5, Nt=0.1, Pr=0.7, Ec=0.5, Nd=2, Nb=0.5, Rn=2, Le=0.5, S
r=0.2, m=2.
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