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1. INTRODUCTION 

In 14𝑡ℎ  century, the Indian mathematician Madhava gave an approximation of the pi series using 

remainder term of the series.  

Madhava series is, 
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 , where C is the circumference of a 

circle of diameter d. Here the remainder term is (-1)
n 

4d Gn where Gn  =
(2𝑛)/2

    2𝑛 2+1
    is the correction 

function. The introduction of the correction term gives a better approximation of the series. 

2. METHOD 

APPROXIMATION OF THE ALTERNATING SERIES   
(−1)𝑛−1

𝑛 𝑛+1 (𝑛+2)
∞
𝑛=1     

The alternating series  
(−1)𝑛−1

𝑛 𝑛+1 (𝑛+2)
∞
𝑛=1   satisfies the conditions of alternating series test and so it is 

convergent.  

If   Rn denotes the remainder term after n terms of the series, then  

 Rn   (−1)𝑛Gn where Gn is the correction function after n terms of the series 

Theorem: 

The correction function for the alternating series      
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Proof: 

 If Gn denotes the correction function after n terms of the series, then 

 we have Gn  + Gn+1 =    
1

 𝑛+1  𝑛+2 (𝑛+3)
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The error function is  En  =  Gn  + Gn+1 −
1

 𝑛+1  𝑛+2 (𝑛+3)
 

For  𝑟1 , 𝑟2   𝑟3 ∈ R   and for any fixed  n , 

Let   Gn  (r1 ,  r2 ,  r3  )   
1

2𝑛3+12𝑛2  + 22𝑛  +12 –(𝑟1𝑛
2  +𝑟2𝑛  +𝑟3) 

      

Then the error function  is  

 En  (r1 ,  r2 ,  r3  )  =   Gn  (r1 ,  r2 ,  r3  ) + Gn+1(r1 ,  r2 ,  r3  )  − 
1

 𝑛+1  𝑛+2 (𝑛+3)
  is a rational function of  r1 , 

r2  and r3. 

ie       𝐸𝑛(𝑟1, 𝑟2,𝑟3)     
𝑁𝑛 (𝑟1 ,𝑟2 ,𝑟3)

𝐷𝑛 (𝑟1 ,𝑟2 ,𝑟3)
 

        𝐷𝑛(𝑟1 , 𝑟2, 𝑟3)   4𝑛9     is a maximum for large n. 

 | 𝑁𝑛(𝑟1 , 𝑟2 , 𝑟3)|  is   minimum   for       𝑟1=3,  𝑟2 = 
15

2
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So|𝐸𝑛(𝑟1 , 𝑟2 , 𝑟3)|  is    minimum     for  𝑟1=3,  𝑟2 = 
15

2
  , 𝑟3  =

15

4
 

Thus for  𝑟1=3,  𝑟2 = 
15

2
  , 𝑟3  =

15

4
, we have both Gn  and En  are functions of a single variable n. 

That  is  the correction function for the series      
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The  absolute value of the error function is  
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Hence the theorem. 

3. RESULTS AND DISCUSSIONS 

For the series    
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(2)      The  magnitude of error function is   
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(3)         Clearly Gn  <  
1

 𝑛+1  𝑛+2 (𝑛+3)
 , the absolute value of the (n+1)

th
  term. 

4. CONCLUSION 

The correction function and error function play a vital role in series approximation. We can improve 

the accuracy of the sum of the series using these functions. 
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