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Abstract: A mapping  ∗ : 𝑋 ×  𝑋 →  𝑋 is a (binary) operation, and the pair (𝑋,∗) is named as a Magma [1 ]. 

Magma with the property: 𝑥 ∗  𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥   for all 𝑥, 𝑦, 𝑧 in Magma is named as L-cyclic 

magma or with the property   𝑥 ∗ 𝑦 ∗ 𝑧 =  𝑧 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑧 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 in Magma is named as R-

cyclic magma.  In this paper, every result show only identical gaol, that is , to prove   when a  L-cyclic magma  

becomes   R-cyclic magma and vice versa . 

Keywords: Magma, L-cyclic magma, R-cyclic magma, L-R-cyclic magma, L-identity, R-identity and cross 

cancellation law.

 

1. INTRODUCTION 

The algebraic objects encountered in this chapter are sets with a binary operation defined on them. 

Andreas[1] introduced a term “magma” in his Ph.D., theses with entitle “Classification and 

Enumeration of finite semigroups”. Magma nothing but an algebraic structure with one binary 

operation on a nonempty set. Throughout this paper  , we consider the magma with atleast any one of 

the property 

i. 𝑥 ∗  𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥    for all 𝑥, 𝑦, 𝑧 in Magma 

or 

ii.  𝑥 ∗ 𝑦 ∗ 𝑧 =  𝑧 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑧 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 in Magma 

The magma with first property is named as L-cyclic magma, with second property is named as R-

cyclic magma. If it has both properties, then it is named as L-R-cyclic magma.  

This paper contains two sections: In section 1, it contains the introduction and in section 2 shows the 

results when a L-cyclic magma becomes R-cyclic magma and vice versa. 

2. L-CYCLIC MAGMA BECOMES R-CYCLIC MAGMA AND VICE VERSA 

In this section contains all   necessary and sufficient conditions of   L-cyclic magma becomes R-cyclic 

magma by using additional property: “commutative, left cancellation, right cancellation  right identity, 

left identity or idempotent” on it.   

Result 2.1:  Let   𝑆,∗   be a commutative magma. Then  𝑆,∗   is L-cyclic magma if and only if it is R-

cyclic magma. 

Proof: 

Let   𝑆,∗   be a L-cyclic magma   𝑆,∗   . 

Consider,  𝑥 ∗ 𝑦 ∗ 𝑧   

By using commutative property on    𝑥 ∗ 𝑦 ∗ 𝑧  , we get  𝑥 ∗ 𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦     

By using cyclic property on 𝑧 ∗  𝑥 ∗ 𝑦    , we get 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥     

By using commutative property on  𝑦 ∗  𝑧 ∗ 𝑥    , so 𝑦 ∗  𝑧 ∗ 𝑥 =  𝑧 ∗ 𝑥 ∗ 𝑦    

Once again by using cyclic property on ∗  𝑧 ∗ 𝑥  , so 𝑦 ∗  𝑧 ∗ 𝑥 = 𝑥 ∗  𝑦 ∗ 𝑧  
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By using commutative property on  𝑥 ∗  𝑦 ∗ 𝑧  , so 𝑥 ∗  𝑦 ∗ 𝑧 =  𝑦 ∗ 𝑧 ∗ 𝑥  

Thus  𝑥 ∗ 𝑦 ∗ 𝑧 =  𝑧 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑧 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 in 𝑆.  

Conversely, Consider  𝑥 ∗  𝑦 ∗ 𝑧  in R-cyclic magma  𝑆,∗ . 

Similarly by applying commutative and R-cyclic properties on   𝑥 ∗  𝑦 ∗ 𝑧  , we have  

𝑥 ∗  𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥    for any 𝑥, 𝑦, 𝑧 in 𝑆. 

Result 2.2:  let     𝑆,∗   be a magma with L-cancellation property. Then  𝑆,∗  is L-cyclic magma if 

and only if it is R-cyclic magma. 

Proof: 

Since magma  𝑆,∗  is L-cyclic magma, so 𝑥 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑥 ∗ 𝑥 = 𝑥 ∗  𝑦 ∗ 𝑥 , for any 𝑥, 𝑦 in  𝑆. 

That is 𝑥 ∗  𝑥 ∗ 𝑦 = 𝑥 ∗  𝑦 ∗ 𝑥     

Since magma  𝑆,∗  has L-cancellation property, so 𝑥 ∗  𝑥 ∗ 𝑦 = 𝑥 ∗  𝑦 ∗ 𝑥 ⇒ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   

Thus, 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   for any 𝑥, 𝑦 in 𝑆. 

Hence   𝑆,∗   is a commutative magma. 

By using result 2.1,  𝑆,∗  is R-cyclic magma. 

Conversely, 

Since magma  𝑆,∗   is R-cyclic magma,  

for any 𝑥, 𝑦 in S,   𝑥 ∗ 𝑥 ∗  𝑥 ∗ 𝑦 =   𝑥 ∗ 𝑦 ∗ 𝑥 ∗ 𝑥  . 

                                                           =   𝑥 ∗ 𝑥 ∗ 𝑦 ∗ 𝑥   

                                                           =   𝑦 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥   

                                                           =  𝑥 ∗  𝑦 ∗ 𝑥  ∗ 𝑥    

                                                           =  𝑥 ∗ 𝑥 ∗  𝑦 ∗ 𝑥      

Since magma  𝑆,∗  has L-cancellation property, 

 so  𝑥 ∗ 𝑥 ∗  𝑥 ∗ 𝑦 =  𝑥 ∗ 𝑥 ∗  𝑦 ∗ 𝑥 ⇒ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥      

Thus, 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   for any  𝑥, 𝑦 in 𝑆. 

Hence   𝑆,∗    is a commutative magma. 

By using result 2.1,   𝑆,∗   is   R-cyclic magma. 

Result  2.3: let   𝑆,∗   be a magma with  R-cancellation property. Then  𝑆,∗  is L-cyclic magma if 

and only if it is R-cyclic magma. 

Proof: 

Necessary Condition:  

Since magma  𝑆,∗   is L-cyclic magma, for any 𝑥, 𝑦 in S , 

  𝑥 ∗ 𝑦 ∗  𝑥 ∗ 𝑥 = 𝑥 ∗   𝑥 ∗ 𝑦 ∗ 𝑥    

                             = 𝑥 ∗  𝑥 ∗  𝑥 ∗ 𝑦      

                             = 𝑥 ∗  𝑦 ∗  𝑥 ∗ 𝑥       

                             = 𝑥 ∗  𝑥 ∗  𝑦 ∗ 𝑥       

                             =  𝑦 ∗ 𝑥 ∗  𝑥 ∗ 𝑥       

Since magma  𝑆,∗  has R-cancellation property,  

So  𝑥 ∗ 𝑦 ∗  𝑥 ∗ 𝑥 =  𝑦 ∗ 𝑥 ∗  𝑥 ∗ 𝑥  ⇒ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   
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Thus, 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   for any 𝑥, 𝑦 in 𝑆. 

Hence   𝑆,∗    is a commutative magma. 

By using result 2.1,  𝑆,∗   is   R-cyclic magma. 

Sufficient condition: 

Since magma  𝑆,∗   is R-cyclic magma,  

for any 𝑥, 𝑦 in S,   𝑥 ∗ 𝑦 ∗ 𝑥 =  𝑥 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑥 ∗ 𝑥 

Since magma  𝑆,∗  has R-cancellation property, 

so  𝑥 ∗ 𝑦 ∗ 𝑥 =  𝑦 ∗ 𝑥 ∗ 𝑥 ⇒ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥      

Thus, 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥   for any 𝑥, 𝑦 in 𝑆. 

Hence   𝑆,∗    is a commutative magma. 

By using result 2.1,   𝑆,∗   is   L-cyclic magma. 

Note:  From above two results, it is understood that every L-cyclic magma is R-cyclic magma and 

vice versa if magma with cancellation property. 

Result 2.4: let   𝑆,∗  be a magma with R-identity. Then  𝑆,∗  is L-cyclic magma if and only if it is  R-

cyclic magma. 

Proof: 

Since  𝑆,∗  magma has R-identity, so there exist an element 𝑒 in 𝑆, such that 𝑥 ∗ 𝑒 = 𝑥 for all 𝑥 in 𝑆. 

Necessary Condition: 

Since the magma   𝑆,∗  has L-cyclic magma, 

so it has L-cyclic property  𝑥 ∗  𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥  for all 𝑥, 𝑦, 𝑧 in 𝑆. 

Thus                  𝑥 ∗ 𝑦 =  𝑥 ∗ 𝑒 ∗  𝑦 ∗ 𝑒  

= 𝑒 ∗   𝑥 ∗ 𝑒 ∗ 𝑦  

= 𝑦 ∗  𝑒 ∗  𝑥 ∗ 𝑒   

= 𝑦 ∗  𝑒 ∗  𝑒 ∗ 𝑥   

                                                            = 𝑦 ∗  𝑥 ∗  𝑒 ∗ 𝑒    

                                                           = 𝑦 ∗  𝑥 ∗ 𝑒   

                                                           = 𝑦 ∗ 𝑥 

Thus the magma   𝑆,∗  is commutative magma. 

By using result 2.1,  𝑆,∗   is   R-cyclic magma. 

Sufficient Condition: 

Since the magma   𝑆,∗  has R-cyclic magma, 

so it has  𝑥 ∗ 𝑦 ∗ 𝑧 =  𝑧 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑧 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 in 𝑆. 

Thus          𝑥 ∗ 𝑦 =  𝑥 ∗ 𝑒 ∗  𝑦 ∗ 𝑒  

=   𝑦 ∗ 𝑒 ∗ 𝑥 ∗ 𝑒 

                                                               =  𝑦 ∗ 𝑥 ∗ 𝑒  

                                                                = 𝑦 ∗ 𝑥 

Thus the magma   𝑆,∗  is commutative magma. 

By using result  2.1,  𝑆,∗   is   L-cyclic magma. 
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Result  2.5:  let   𝑆,∗   be a magma with  L-identity. Then  𝑆,∗  is L-cyclic magma if and only if it is 

R-cyclic magma. 

Proof: 

Since   𝑆,∗  magma has L-identity, so there exist an element 𝑒 in 𝑆, such that 𝑒 ∗ 𝑥 = 𝑥 for all 𝑥 in  𝑆. 

Necessary Condition: 

Since the magma   𝑆,∗  has L-cyclic magma, 

so it has L-cyclic property  𝑥 ∗  𝑦 ∗ 𝑧 = 𝑧 ∗  𝑥 ∗ 𝑦 = 𝑦 ∗  𝑧 ∗ 𝑥  for all 𝑥, 𝑦, 𝑧 in 𝑆. 

Thus          𝑥 ∗ 𝑦 =  𝑒 ∗ 𝑥 ∗  𝑒 ∗ 𝑦  

= 𝑦 ∗   𝑒 ∗ 𝑥 ∗ 𝑒  

= 𝑦 ∗   𝑥 ∗ 𝑒   

= 𝑒 ∗  𝑦 ∗ 𝑥  

                                                                 = 𝑦 ∗ 𝑥 

Thus the magma   𝑆,∗  is commutative magma. 

By using result 2.1,  𝑆,∗   is R-cyclic magma. 

Sufficient Condition: 

Since the magma   𝑆,∗  has R-cyclic magma, 

so it has R-cyclic property   𝑥 ∗ 𝑦 ∗ 𝑧 =  𝑧 ∗ 𝑥 ∗ 𝑦 =  𝑦 ∗ 𝑧 ∗ 𝑥 for all 𝑥, 𝑦, 𝑧 in 𝑆. 

Thus   𝑥 ∗ 𝑦 =  𝑒 ∗ 𝑥 ∗  𝑒 ∗ 𝑦  

=   𝑒 ∗ 𝑦 ∗ 𝑒 ∗ 𝑥 

                                                           =  𝑦 ∗ 𝑒 ∗ 𝑥 

=  𝑦 ∗ 𝑥 ∗ 𝑒 

                                                               =  𝑒 ∗ 𝑦 ∗ 𝑥  

                                                               = 𝑦 ∗ 𝑥 

Thus the magma   𝑆,∗  is commutative magma. 

By using result 2.1,   𝑆,∗   is L-cyclic magma. 

Note : from above two results ,it is easily show that L-cyclic magma is R-cyclic magma and vice 

versa if magma with identity. 

Result 2.6: A cross cancelation magma  𝑆,∗  with idempotent element 𝑒.Then  𝑆,∗  is L-cyclic 

magma if and only if it is R-Cyclic magma. 

Proof: 

Since the magma  𝑆,∗  has a cross cancelation property, so 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑧 ⇒ 𝑥 = 𝑧 for any 𝑥, 𝑦, 𝑧  in 𝑆 

Necessary Condition: 

Let 𝑒 be an idempotent element of magma  𝑆,∗  . 

So, 𝑒 ∗ 𝑒 = 𝑒 

Case 1: 

since 𝑆 has a cyclic property ,so 𝑥 ∗  𝑒 ∗ 𝑒 = 𝑥 ∗ 𝑒 for all 𝑥 in 𝑆 . 

⇒ 𝑒 ∗  𝑥 ∗ 𝑒 = 𝑥 ∗ 𝑒     

⇒ since 𝑆  has a cross cancelation property ,s o 𝑥 ∗ 𝑒 = 𝑥  ,  for all 𝑥 in 𝑆 . 

Thus  idempotent element 𝑒 is a right identity in magma   𝑆,∗  .  
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Case 2:  

Consider and element  𝑒 ∗ 𝑥 

By using left identity of case 1, this is equal to   𝑒 ∗  𝑒 ∗ 𝑥    

By using L-cyclic property on 𝑒 ∗  𝑒 ∗ 𝑥  , we have 𝑒 ∗  𝑒 ∗ 𝑥 = 𝑥 ∗  𝑒 ∗ 𝑒    

Using idempotent property of 𝑒 on 𝑥 ∗  𝑒 ∗ 𝑒   , 𝑥 ∗  𝑒 ∗ 𝑒 = 𝑥 ∗ 𝑒   

Thus, 𝑒 ∗  𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒   

⇒ since 𝑆  has a cross cancelation property ,s o 𝑒 ∗ 𝑥 = 𝑥  ,  for all 𝑥 in 𝑆 . 

Thus idempotent element 𝑒 is a left identity in magma   𝑆,∗  .  

Hence, the idempotent element  𝑒 is identity in   𝑆,∗  . 

Next to show that commutative property of  𝑆,∗  . 

Let 𝑥, 𝑦 are any two elements in magma   𝑆,∗  . 

𝑥 ∗ 𝑦 =  𝑒 ∗ 𝑥 ∗  𝑒 ∗ 𝑦  

         = 𝑦 ∗   𝑒 ∗ 𝑥 ∗ 𝑒  

          = 𝑒 ∗  𝑦 ∗  𝑒 ∗ 𝑥   

         = 𝑒 ∗  𝑦 ∗ 𝑥   ( since e is an left identity of S) 

         = 𝑦 ∗ 𝑥           ( since e is an left identity of S)    

Thus the magma    𝑆,∗   is commutative magma 

By using result 2.1,  𝑆,∗   is   R-cyclic magma. 

Sufficient Condition: 

Next to show that it is L-cyclic magma. 

Consider  𝑥 ∗  𝑦 ∗ 𝑧  

By using commutative property on 𝑥 ∗  𝑦 ∗ 𝑧  , so we have 𝑥 ∗  𝑦 ∗ 𝑧 =  𝑦 ∗ 𝑧 ∗ 𝑥   Let 𝑒 be an 

idempotent element of magma 𝑆,∗  . 

So, 𝑒 ∗ 𝑒 = 𝑒 

Case 1: 

since 𝑆 has a cyclic property , so  𝑒 ∗ 𝑒 ∗ 𝑥 = 𝑒 ∗ 𝑥 for all 𝑥 in 𝑆 . 

⇒  𝑥 ∗ 𝑒 ∗ 𝑒 = 𝑒 ∗ 𝑥  

⇒  𝑒 ∗ 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥  , for all 𝑥 in. 

⇒ since 𝑆  has a cross cancelation property ,s o  𝑒 ∗ 𝑥 = 𝑥, for all 𝑥 in 𝑆 . 

Thus idempotent element 𝑒 is a left identity in magma   𝑆,∗  .  

Case 2:  

Consider and element  𝑥 ∗ 𝑒 

By using left identity of case 1, this is equal to    𝑒 ∗ 𝑥 ∗ 𝑒  . 

By using R-cyclic property on  𝑒 ∗ 𝑥 ∗ 𝑒 , we have  𝑒 ∗ 𝑥 ∗ 𝑒 =  𝑒 ∗ 𝑒 ∗ 𝑥   

Again twice by using    left identity of case 1, we have  𝑒 ∗ 𝑒 ∗ 𝑥 = 𝑒 ∗ 𝑥 &  𝑒 ∗ 𝑥 = 𝑥 

Thus, 𝑥 ∗ 𝑒 = 𝑥  

Next to show that   𝑆,∗  is commutative magma. 

Commutative property: 

Let 𝑥, 𝑦 are any two elements in magma   𝑆,∗  . 
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𝑥 ∗ 𝑦 =  𝑒 ∗ 𝑥 ∗  𝑒 ∗ 𝑦  

         =   𝑒 ∗ 𝑦 ∗ 𝑒 ∗ 𝑥 

          =   𝑒 ∗ 𝑒 ∗ 𝑦 ∗ 𝑥 

         =  𝑒 ∗ 𝑦 ∗ 𝑥  

           = 𝑦 ∗ 𝑥 

Thus the magma   𝑆,∗  is commutative magma. 

By using result 2.1,  𝑆,∗  is L-cyclic magma. 
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