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Abstract: In this paper we introduce new concepts namely Complementary Colour Transversal Vertex 

Covering Set (CCTVC Set) and Complementary Colour Transversal Vertex Covering Number (CCTVC Number) 

of a graph.  If G is a graph then this number is denoted as c (G). We have also observed that c (G)= 0(G) 

or c (G) = 0(G) + 1 for any graph G, Where 0(G) is the vertex covering number of a graph G.We proved 

several theorems regarding the effect of removing a vertex from a graph on this number. 
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1. INTRODUCTION 

The concept of a vertex covering set is well known and has been studied by several authors. The 

identity 0(G) + 0(G) = | V(G) | (0(G) = The vertex covering number & 0(G) = The independence 

number ) is well known. The concept of colour transversal dominating set was studied in detail in 

Ph.D. Thesis of Manoharan [9].We introduce the concepts of colour transversal vertex covering set 

and colour transversal vertex covering number of a graph in [3].  

In this paper we consider the concepts of complementary colouring and complementary chromatic 

number of a graph.These concepts were introduced in [2]. Now we introduce the concepts of 

Complementary Colour Transversal Vertex Covering Set (CCTVC Set) and Complementary Colour 

Transversal Vertex Covering Number (CCTVC Number) of a graph. The operation of removing a 

vertex from a graph may increase, decrease or keep the number unchanged. We consider the effect of 

this operation on complementary colour transversal vertex covering number (CCTVC Number) of a 

graph. 

We assume that our graphs are finite, simple and undirected. If G is a graph then V(G) will denote the 

vertex set of G and E(G) will denote the edge set of G. 

2. RESULTS AND DISCUSSION 

Definition 2.1 (Complementary Colouring) [2] 

Let G be a graph. The Colouring f of vertices of G is said to be a complementary colouring if 

whenever vertices u and v have different colours then they must be adjacent. 

Definition 2.2 (Complementary Chromatic Number) [2] 

Let G be a graph. The maximum numbers of colours which can be assigned to the vertices so that the 

resulting colouring is a complementary colouring is called the complementary chromatic number of G 

& it is denoted as C (G). This complementary colouring is called complementary chromatic 

colouring. 

Remark 2.3 

 The complementary colouring of a graph need not be a proper colouring. 

 If a graph G has having complementary colouring then it may happen that two vertices are 

adjacent and they have the same colour. 
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 If a graph has been given a complementary colouring then two non-adjacent vertices cannot have 

different colours. Thus, in any independent set all the vertices must have the same colours. 

 It may be noted that in general a colour class corresponding to a complementary colouring need 

not be an independent set. 

Example 2.4 

Consider the graph with vertices v1, v2, v3, v4 

 

 

 

 

 

 

 

Consider complementary colouring in which v1, v2, v3, v4   receives colours as follows. 

v1 – colour 1, v2 – colour 1, v3 – colour 2, v4 – colour 1 

Here the colour classes corresponding to colour 1 is not an independent set. 

Proposition 2.5 [2]   

Let G be a graph. Then 

 C (G) ≤  (G) 

 C (G) =  (G) iff G is a complete k – partite graph. 

Proposition 2.6 

Let G be a graph and suppose the colour classes of a complementary chromatic colouring of G are    

C1, C2, …. , Ck . Let T be a transversal of these colour classes then T is a dominating set. 

PROOF 

Let us assume that T intersect each Ci in a singleton set and therefore let T  Ci = {vi}                               

for  i = 1,2, …… , k. Let z be a vertex such that z does not belongs to T. Suppose z  Ci for some i. 

Then z is adjacent to vj for every j ≠ i. 

Thus, T is a dominating set.              

Corollary 2.7 

Let G be a graph. Then (G) ≤  c (G) 

PROOF 

From the above proposition (G) ≤ | T | =  c (G)                         

Proposition 2.8 

Let G be a graph and C1, C2, …. , Ck be the colour classes corresponding to some complementary 

chromatic colouring of G. Then for every colour class Ci with | Ci|   2 & for every v Ci   some       

u Ci  u is not adjacent to v. 

PROOF 

Suppose the statement does not hold. 

Then for some colour class say C1 with | C1 |  2 there is a vertex v in C1 such that v is adjacent to 

every vertex of C1. Also v is adjacent to every vertex of every other colour class. Thus v is adjacent to 

every other vertex of G. Now, suppose we have used colours 1, 2, 3, …., k  in complementary 
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chromatic colouring of G. We may assign a new colour k + 1 to v and keep the colours of other 

vertices unchanged. Then we get a complementary colouring of G with k + 1 colours. This is a 

contradiction because complementary chromatic number of G =  k. 

Therefore the statement of the proposition must be true.      

Proposition 2.9 

Let G be a graph and suppose C1, C2, …. , Ck are the colour classes corresponding to some 

complementary colouring of G. Let T be an independent subset of G. Then T  Ci  for some i. 

PROOF 

If T is a singleton set then obviously T  Ci for some i. 

Suppose T has at least two elements and suppose T  Ci ≠  and T  Cj ≠  for some i ≠ j. 

Let v  T  Ci and u  T  Cj. Since v  Ci and u  Cj and i ≠ j  v and u must be adjacent. This 

contradicts the fact that T is an independent set. 

 T cannot intersect two distinct colour classes. Also T  Ci is non-empty because the colour classes 

forms a partition of V (G). Thus T  Ci for some i.                                                                                          

The following theorem is proved in [1]. We present a different proof for the sake of completeness. 

THEOREM 2.10 

Let G be a graph then the complementary chromatic colouring of G is unique. ( in the sense that any 

two complementary chromatic colouring of G give rise to the same colour classes ) 

PROOF 

Suppose there are two complementary chromatic colouring of G whose colour classes are                   

{ C1, C2,   …… ,Ck} and { D1, D2,   …… ,Dk }. We will prove that for every i Ci =  Dj  for some 

unique j. 

For this first we prove that for every i there is some j  Ci   Dj. 

Since Ci ≠  & D1  D2    ……  Dk = V(G), Ci  Dj  ≠  for some j 

Claim 

Ci  Dj 

PROOF 

Suppose Ci  Dj ≠  for some j & for some j  Ci  Dj ≠  . For the sake of simplicity we assume that 

Ci intersects only these two sets Dj & Dj. 

Let Ci = Ci   Dj  & Ci =  Ci   Dj 

Ci  Ci  =  Ci 

Now we assign a new colouring to vertices of G as follows. 

For every r ≠ i the colours of vertices of the colour class Cr are unchanged.  

If x  Ci   Dj then we assign colour i to x. 

If x  Ci  Dj then we assign colour i to x. 

Then we have a new complementary chromatic colouring of G consisting of colours                      

1,2,3, ….., i - 1, i, i, i + 1, …… , k. 

This colouring uses k + 1 colours & it is a complementary colouring. This contradicts the fact that the 

complementary chromatic number of G is k. 

Ci  Dj ≠  for unique j. 

Ci   Dj  for some unique j. 
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If Ci is a proper subset of Dj for some i then C1  C2    …… Ck  ≠  V(G)  because                          

D1  D2    …… Dk  =  V(G).  

Thus Ci= Dj for some unique j.     

{ C1, C2,   …… ,Ck} = { D1, D2,   …… ,Dk }. 

This proves that this colouring is unique.                                        

Proposition 2.11 

Let G be a graph and v V(G). Let f be a complementary colouring of G then the restriction g of f on 

G – v is also a complementary colouring of G – v. 

PROOF 

Let x and y be two vertices of G – v such that g(x) ≠ g(y) then f(x) ≠ f(y).  

Since f is a complementary colouring, it follows that x and y are adjacent vertices of G and therefore 

adjacent vertices of G – v.                        

THEOREM 2.12 

Let G be a graph & v V(G). Then the following statements are equivalent 

(1) C (G - v) < C (G) 

(2) v is adjacent to every other vertex of G.                                                                

(3) {v} is colour class in the complementary chromatic colouring of G.                          

PROOF 

(1)  (3) 

Suppose {v} is not a colour class in the complementary chromatic colouring of G. Therefore there is a 

vertex different from v which has the same colour as v.  Now, consider the restriction g of the 

complementary chromatic colouring f of  G. There is a vertex u in G – v such that f(u) = f(v). Then g 

is a complementary chromatic colouring of G – v. Also g is a complementary colouring of G – v. 

C (G - v)  The number of colours used by g = The number of colours used by f = C (G) 

C (G - v)  C (G) 

This is a contradiction. 

{v} is colour class in the complementary chromatic colouring of G.                          

 (3)  (2)     

For any complementary colouring of a graph G a vertex in any colour class is adjacent to every vertex 

in every other colour class. Since {v} is a colour class, {v} is adjacent to every vertex of every other 

colour class. Equivalently v is adjacent to every other vertex of G.  

Therefore (2) is proved. 

(2)  (1)  

Suppose v is adjacent to every other vertex of G. 

Consider any complementary chromatic colouring of G – v which uses colours 1, 2,  3, …… ,k. Now, 

assign colour k + 1 to v. Then obviously we get a complementary colouring of vertices of G which 

uses k + 1 colours. 

C (G)   k + 1 > k = C (G - v) 

C (G - v) < C (G)             

Corollary 2.13 

Let G be a graph & v V(G). If c (G - v) = c (G) then {v} is not a colour class in the complementary 

chromatic colouring of G. 
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PROOF 

Since c (G - v) = c (G) 

c(G - v) ≮ c (G) 

So, {v} is not a colour class in the complementary chromatic colouring of G.                                        

Definition 2.14 (Complementary Colour Transversal Vertex Covering Set)  

Let G be a graph. A subset S of V(G) is said to be a complementary colour transversal vertex covering 

set of G if  

1. S is a transversal for the complementary chromatic colouring of G and  

2. S is a vertex covering set of G 

This set is also called CCTVC set of G.  

Example 2.15 

For the graph mentioned in example – 2.4, S = {v1, v3} is a CCTVC set. 

Definition 2.16 (Complementary Colour Transversal Vertex Covering Number)  

Let G be a graph and S  V(G). If S is a complementary colour transversal vertex covering set of G 

whose cardinality is minimum among all complementary colour transversal vertex covering set of G 

then S is said to be a minimum complementary colour transversal vertex covering set of G. 

The cardinality of such a set is called complementary colour transversal vertex covering number (or 

CCTVC Number) of G. It is denoted as c (G). 

THEOREM 2.17 

Let G be a graph. Then for G only one of the following two possibilities holds. 

(1) c (G) = 0 (G) 

(2) c (G) = 0 (G) + 1 

PROOF 

Let G be a graph. Consider any complementary chromatic colouring of G and suppose                         

C1, C2,   …… ,Ck are the colour classes corresponding to this colouring. Let S be a maximum 

independent subset of G so that | S | =  0 (G). Now S is a subset of Ci for some unique i. Suppose S is 

a proper subset of Ci then, 

(1) V(G) – S is a minimum vertex covering set of G. 

(2) V(G) – S is a colour transversal for this complementary colouring of G  

Therefore, V(G) – S is a minimum vertex covering set as well as a complementary colour transversal 

vertex covering set.  

Since  (G) 0 (G)  it follows that c (G) = 0 (G) in this case. 

Suppose S is a subset of Ci and S = Cithen V(G) – S is a vertex covering set but it is not a transversal 

for this colouring. Let x be any vertex of S then the set ( V(G) – S )  {x} is a CCTVC set of G. 

Let T = ( V(G) – S )  {x} 

c (G) =  | T | = | V(G) – S | + 1 = 0 (G) + 1 

Thus for any graph G only one of the following two possibilities holds 

(1) c (G) = 0 (G) 

(2) c (G) = 0 (G) + 1              
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THEOREM 2.18 

If G is a complete graph then for any vertex v of G  

(1) C (G - v)  <  C (G) 

(2) c(G - v)  <  c(G) 

PROOF 

Result (1) follows from the Theorem – 2.17 

(2) Suppose | V (G) | = n. Since G is a complete graph C (G) = n and c(G) = n for any v V(G) ,    

G – v is also a complete graph. 

c (G - v)  = n – 1 < n = c(G) 

c (G - v)  < c(G)                             

THEOREM 2.19 

Let G be a graph with 0(G)  2. Let v V(G)  C (G - v)  < C (G) then c(G - v)  < c(G) 

PROOF 

Since 0(G)  2, G is not a complete graph. First suppose that c (G) = 0 (G).  

Let S be a minimum vertex covering set of G. Now, V (G) – S is a maximum independent set of G.   

v V(G) – S ( ∵ v is adjacent to every other vertex of G & 0(G)  2 ) and therefore v  S. 

Now, S1 = S – {v} is a vertex covering set of G – v also S1 is a colour transversal for the 

complementary chromatic colouring of G – v which is induced from the complementary chromatic 

colouring of G. 

 S1 is a CCTVC set of G – v. 

c(G - v)  ≤ | S1 | < | S | =  c(G) 

Suppose c (G) = 0 (G) + 1  

Let S be a minimum CCTVC set of G then v  S because {v} is a colour class in the unique 

complementary chromatic colouring of G. 

Now, let S1 = S – {v} then S1 is a CCTVC set of G – v. 

c (G - v)  ≤ | S1 | =  0 (G)  <c(G) 

c (G - v)  <c(G)                             

THEOREM 2.20 

Let G be a graph & v V (G). If C (G - v) = C (G) then c(G - v)  ≤ c(G) 

PROOF 

Since C (G - v) = C (G), {v} is not a colour class in the complementary chromatic colouring of G. 

Let S be a minimum CCTVC set of G. 

Case 1:  v  S 

Then S is a vertex covering set of G – v & since it is a colour transversal of G it contains a vertex u 

different from v such that u has the same colour as v. 

Thus S is a CCTVC set in G – v.                 

Case 2:  v  S 

Suppose S contains a vertex u different from v which has the same colour as v. Then S – {v} is a 

vertex covering set of G – v and it is also a colour transversal for the complementary chromatic 

colouring of G – v. 
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Suppose v  S & there is no other vertex which has the same colour as v & which is in S. 

In this case let u be a vertex different from v such that u has the same colour as v. 

Let S1 = ( S – {v})  {u} 

Then S1 is a CCTVC set.  

From both the cases above it follows that c(G - v)  ≤  c(G)                        

Now, we consider the possibility when C (G - v) > C (G). 

Let { C1, C2,   …… ,Cj} be the set of all colour classes of G ( j  1 ) and let { D1, D2,   …… ,Dk }be 

the set of all colour classes of G – v. 

THEOREM 2.21 

C (G - v) > C (G) iff 

(1)  There are at least two colour classes of G – v which are all subsets of the colour class C which 

contains v & there union = C – {v} and v is non-adjacent with some vertex in every such colour class. 

(2) Other colour classes of G – v are just the colour classes of G different from C. 

PROOF 

(1)  Suppose C (G - v) > C (G) then k  >  j 

Now, each colour class Di intersect some colour class Cr of G. Suppose Di  Cr ≠  & Di  Cr ‘ ≠ . 

Now, let Di  Cr = Di’ & Di  Cr ‘ = Di’’  

Then we can assign two distinct colours of  vertices of  Di’& Di’’  in place of the single colour of Di. 

This will increase the number of colour used in complementary colouring of G – v. Which is a 

contradiction. 

  Di   Cr ≠   for some unique r. 

 Di   Cr for some unique r. 

Also, there are colour classes of G – v which intersect the colour class C containing v. Therefore, 

there are colour classes which are subsets of C. Suppose there are only m colour classes of G –v 

which are containing in C and m <  k – j + 1. 

Now, we provide a new colouring of G as follows. 

Assign the same colour as that of C to all the vertices which belong to the m colour classes 

mentioning above. Do not change the colours of the remaining  j – m  colour classes which are 

disjoint from C. Thus we get a complementary chromatic colouring of G consisting of                         

k – m + 1colours, which is greater than j. This is a contradiction as j is the highest number of colours 

which is assign to vertices of G so that resulting colouring is complementary colouring. 

Suppose there are m colour classes of G –v which are containing in C and m >  k – j + 1. 

Then k – m  <  j – 1 

Thus it must be true that the remaining k –m colour classes of G – v are contained in j – 1 colour 

classes of G. Which is impossible because  k – m  <  j – 1. 

Thus, m <  k – j + 1 & m >  k – j + 1 are impossibilities. Therefore, m =  k – j + 1 

Since C is a colour class in G containing v & union of the above mentioned colour classes = C – {v}, 

v must be non-adjacent to some vertex in the union & therefore v must be  non-adjacent to some 

vertex in some colour class. 

Claim 

Now, we prove that v is non-adjacent with some vertex in every colour class of G – v which is 

contained in C. 
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PROOF OF THE CLAIM 

Suppose there is a colour class of G –v say D such that D  C & v is adjacent with every vertex of D. 

Then we can assign a colour to the vertices of D which is different from v & it is also different from 

the colours of other colour classes of G.  

Thus we get a complementary colouring of G which consists of  j + 1 colours. This contradicts the 

fact that complementary chromatic number of G = j. Therefore, there is no colour class of  G – v 

which is contained in D & v is adjacent with every vertex of that colour class. 

(2)  Now, consider the remaining k – (k – j + 1) = j -1 colour classes of G – v . Since there are j -1 

colour classes of G different from C, each colour class is contained in a unique colour class of  G. 

Since the union of both the colour classes = V(G), this j -1 colour classes of G – v are exactly the 

colour classes different from C. 

Conversely suppose (1) and (2) holds then it follows that  

The number of colour classes of G – v  >  The number of colour classes of G  

C (G - v) > C (G)                                         

THEOREM 2.22 

Let G be a graph & v V(G). Suppose C (G - v) > C (G) than any of the following three possibilities 

can hold 

(1) c(G - v)  > c(G) 

(2) c(G - v)  = c(G) 

(3) c(G - v)  < c(G) 

PROOF 

First suppose that 0 (G - v)  < 0 (G)  then there is a minimum vertex covering set S of G such that   v 

 S. Let M = V(G) – S then M is a maximum independent subset of G & v  M. 

Now, M  Ci for some i 

Case (1)M is a proper subset of Ci 

Then V(G) – M = S is a minimum vertex covering set & it is also a colour transversal of G.  

 S is a CCTVC set of G & | S | = n - 0 (G) = 0 (G) 

Since M does not contain v, M is also a maximum independent subset of G – v. Therefore M is a 

subset of Dr for some unique r. 

If M is a proper subset of Dr then Let G1 = G – v  

S1  =  V(G1) – M is a minimum vertex covering set of G – v & it is also a colour transversal of        

G – v. 

 S1 is a CCTVC set of G – v & | S1 | = n – 1 - 0 (G) 

c(G - v)  <  c(G) 

Now, suppose M = Dr. Let x  Dr 

Consider the set S1  =  ( V(G1) – M )  {x} then S1 is a vertex covering set & it is also a colour 

transversal of  G – v. 

Also | S1 | = 0 (G) + 1 

S1 is a CCTVC set of G – v 

c(G - v)  = | S1 |  = n – 0 (G) = c(G) 

Case (2)Suppose M = Ci for some i. Let x  M. 
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Now, consider the set T = ( V(G) – M )  {x} then T is a vertex covering set of G & it is also a colour 

transversal for complementary chromatic colouring of G. Thus T is a minimum CCTVC set. 

c(G) = | T |  = n – 0 (G) + 1 

Suppose M is a proper subset of  some colour class Dr  of the complementary chromatic colouring of 

G – v. Then T1= V(G1) – M is is a minimum vertex covering set of G – v & it is also a colour 

transversal for this colouring of G – v. 

c(G - v)  = | T1 |  = n – 1 -  0 (G) 

c(G - v)  < c(G) 

On the other hand if M = Dr  forsome r then let y Di 

Then T2  =  ( V(G1) – M )  {y}  is a vertex covering set & it is also a colour transversal of  G – v. 

c(G - v)  = n – 1 -  0 (G) + 1 = n - 0 (G)  

c(G - v)  < c(G) 

Now suppose 0 (G - v)  = 0 (G) 

In this case v  S for any minimum vertex covering set S of G.  

v M for every maximum independent subset M of G. Now, M is a subset of Ci for some colour 

class Ci. Since v  M  v Ci 

Suppose M is a proper subset of Ci then as proved above c(G) = n - 0 (G) 

1.  Suppose M – {v} is a proper subset of Dr for some colour class Dr  of G – v.  

Then c(G - v)  =n – 1 -  ( 0 (G) – 1 ) = n - 0 (G) 

c(G - v)  = c(G) 

2.  Suppose M – {v} = Dr for some colour class Dr  of G – v. 

Then c(G - v)  = n – 1 -  ( 0 (G) – 2 ) = n - 0 (G) + 1 

c(G - v)  > c(G) 

Suppose M = Ci for some colour class Ci of G.  

Then c(G) = n - 0 (G) + 1 

Suppose M – {v} is a proper subset of Dr for some colour class Dr  of G – v. As proved in above  

theorem Dr & Ds are subsets of Ci for at least two distinct values r & s then M – {v} will be a proper 

subset of Dr   Ds and therefore M – {v} will be proper subset of C – {v}. 

 M is proper subset of Ci. which is contradiction. 

 M is proper subset of Dr  is not possible for any r. 

Hence, c(G - v)  = n – 1 -  ( 0 (G) – 2 ) = n - 0 (G) + 1 

c(G - v)  = c(G)                          

Example 2.23 

Consider the graph G in example 2.4 

Here, C (G) = 2 & C (G – v4) = 3 

C (G - v) > C (G) 

Also observe that 

c(G) = 2  & c(G – v4)  = 3 

Hence, c(G - v)  > c(G) 



D.K.Thakkar & V. R. Dave 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 33 

Example 2.24 

Consider the path graph with four vertices G = P4 

 

 

 

 

 

Here, C (G) = 1  & C (G – v4) = 2 

C (G - v)  > C (G) 

Also observe that 

c(G) =  2  =  c(G – v4)   

Hence, c(G - v)  = c(G) 

3. CONCLUDING REMARK 

There are enough number of examples of graph G for which C (G - v) > C (G) and                          

c(G - v)   c(G). However, we do not know a graph G for which C (G - v) > C (G) and           

c(G - v)  < c(G). 
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