Complementary Colour Transversal Vertex Covering Set

D.K.Thakkar ${ }^{1}$, V. R. Dave ${ }^{2}$
${ }^{1}$ Department of Mathematics, Saurashtra University Campus, University Road, Rajkot, India
${ }^{2}$ Shree M. \& N. Virani Science College, Kalavad Road, Rajkot, India

Abstract

In this paper we introduce new concepts namely Complementary Colour Transversal Vertex Covering Set (CCTVC Set) and Complementary Colour Transversal Vertex Covering Number (CCTVC Number) of a graph. If G is a graph then this number is denoted as $\alpha_{*} c(G)$. We have also observed that $\alpha_{*} c(G)=\alpha_{0}(G)$ or $\alpha_{*} c(G)=\alpha_{0}(G)+1$ for any graph G, Where $\alpha_{0}(G)$ is the vertex covering number of a graph G. We proved several theorems regarding the effect of removing a vertex from a graph on this number.

Keywords: Transversal, Colour Transversal, Vertex Covering Set,Vertex Covering Number, Complementary Colour Transversal Vertex Covering Set, Complementary Colouring, Complementary Chromatic Number, Complementary Colour Transversal Vertex Covering Number.

AMS Subject Classification (2010): 05C15, 05C69.

1. Introduction

The concept of a vertex covering set is well known and has been studied by several authors. The identity $\alpha_{0}(G)+\beta_{0}(G)=|V(G)|\left(\alpha_{0}(G)=\right.$ The vertex covering number $\& \beta_{0}(G)=$ The independence number) is well known. The concept of colour transversal dominating set was studied in detail in Ph.D. Thesis of Manoharan [9]. We introduce the concepts of colour transversal vertex covering set and colour transversal vertex covering number of a graph in [3].

In this paper we consider the concepts of complementary colouring and complementary chromatic number of a graph. These concepts were introduced in [2]. Now we introduce the concepts of Complementary Colour Transversal Vertex Covering Set (CCTVC Set) and Complementary Colour Transversal Vertex Covering Number (CCTVC Number) of a graph. The operation of removing a vertex from a graph may increase, decrease or keep the number unchanged. We consider the effect of this operation on complementary colour transversal vertex covering number (CCTVC Number) of a graph.
We assume that our graphs are finite, simple and undirected. If G is a graph then $V(G)$ will denote the vertex set of G and $E(G)$ will denote the edge set of G.

2. RESULTS AND DISCUSSION

Definition 2.1 (Complementary Colouring) [2]

Let G be a graph. The Colouring f of vertices of G is said to be a complementary colouring if whenever vertices u and v have different colours then they must be adjacent.

Definition 2.2 (Complementary Chromatic Number) [2]

Let G be a graph. The maximum numbers of colours which can be assigned to the vertices so that the resulting colouring is a complementary colouring is called the complementary chromatic number of G $\&$ it is denoted as $\chi_{C}(\mathrm{G})$. This complementary colouring is called complementary chromatic colouring.

Remark 2.3

$>$ The complementary colouring of a graph need not be a proper colouring.
$>$ If a graph G has having complementary colouring then it may happen that two vertices are adjacent and they have the same colour.
$>$ If a graph has been given a complementary colouring then two non-adjacent vertices cannot have different colours. Thus, in any independent set all the vertices must have the same colours.
$>$ It may be noted that in general a colour class corresponding to a complementary colouring need not be an independent set.

Example 2.4

Consider the graph with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$

Fig. 1
Consider complementary colouring in which $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$ receives colours as follows.
$\mathrm{v}_{1}-$ colour $1, \mathrm{v}_{2}-$ colour $1, \mathrm{v}_{3}-$ colour $2, \mathrm{v}_{4}-$ colour 1
Here the colour classes corresponding to colour 1 is not an independent set.

Proposition 2.5 [2]

Let G be a graph. Then
$>\chi \mathrm{C}(\mathrm{G}) \leq \chi(\mathrm{G})$
$>\chi \mathrm{C}(\mathrm{G})=\chi(\mathrm{G})$ iff G is a complete k - partite graph.

Proposition 2.6

Let G be a graph and suppose the colour classes of a complementary chromatic colouring of G are $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$. Let T be a transversal of these colour classes then T is a dominating set.

Proof

Let us assume that T intersect each C_{i} in a singleton set and therefore let $\mathrm{T} \cap \mathrm{C}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{i}}\right\}$ for $i=1,2, \ldots \ldots, k$. Let z be a vertex such that z does not belongs to T. Suppose $z \in C_{i}$ for some i. Then z is adjacent to v_{j} for every $\mathrm{j} \neq \mathrm{i}$.

Thus, T is a dominating set.

Corollary 2.7

Let G be a graph. Then $\gamma(\mathrm{G}) \leq \chi_{\mathrm{c}}(\mathrm{G})$

Proof

From the above proposition $\gamma(\mathrm{G}) \leq|\mathrm{T}|=\chi_{\mathrm{c}}(\mathrm{G})$

Proposition 2.8

Let G be a graph and $C_{1}, C_{2}, \ldots, C_{k}$ be the colour classes corresponding to some complementary chromatic colouring of G. Then for every colour class C_{i} with $\left|C_{i}\right| \geq 2 \&$ for every $v \in C_{i} \exists$ some $\mathrm{u} \in \mathrm{C}_{\mathrm{i}} \ni \mathrm{u}$ is not adjacent to v .

Proof

Suppose the statement does not hold.
Then for some colour class say C_{1} with $\left|\mathrm{C}_{1}\right| \geq 2$ there is a vertex v in C_{1} such that v is adjacent to every vertex of C_{1}. Also v is adjacent to every vertex of every other colour class. Thus v is adjacent to every other vertex of G. Now, suppose we have used colours $1,2,3, \ldots, k$ in complementary

Complementary Colour Transversal Vertex Covering Set

chromatic colouring of G. We may assign a new colour $\mathrm{k}+1$ to v and keep the colours of other vertices unchanged. Then we get a complementary colouring of G with $\mathrm{k}+1$ colours. This is a contradiction because complementary chromatic number of $\mathrm{G}=\mathrm{k}$.
Therefore the statement of the proposition must be true.

Proposition 2.9

Let G be a graph and suppose $C_{1}, C_{2}, \ldots, C_{k}$ are the colour classes corresponding to some complementary colouring of G . Let T be an independent subset of G . Then $\mathrm{T} \subseteq \mathrm{C}_{\mathrm{i}}$ for some i.

Proof

If T is a singleton set then obviously $\mathrm{T} \subseteq \mathrm{C}_{\mathrm{i}}$ for some i .
Suppose T has at least two elements and suppose $\mathrm{T} \cap \mathrm{C}_{\mathrm{i}} \neq \phi$ and $\mathrm{T} \cap \mathrm{C}_{\mathrm{j}} \neq \phi$ for some $\mathrm{i} \neq \mathrm{j}$.
Let $v \in T \cap C_{i}$ and $u \in T \cap C_{j}$. Since $v \in C_{i}$ and $u \in C_{j}$ and $i \neq j$ vand u must be adjacent. This contradicts the fact that T is an independent set.
$\therefore \mathrm{T}$ cannot intersect two distinct colour classes. Also $\mathrm{T} \cap \mathrm{C}_{\mathrm{i}}$ is non-empty because the colour classes forms a partition of $\mathrm{V}(\mathrm{G})$. Thus $\mathrm{T} \subseteq \mathrm{C}_{\mathrm{i}}$ for some i .

The following theorem is proved in [1]. We present a different proof for the sake of completeness.

Theorem 2.10

Let G be a graph then the complementary chromatic colouring of G is unique. (in the sense that any two complementary chromatic colouring of G give rise to the same colour classes)

Proof

Suppose there are two complementary chromatic colouring of G whose colour classes are $\left\{C_{1}, C_{2}, \ldots \ldots, C_{k}\right\}$ and $\left\{D_{1}, D_{2}, \ldots \ldots, D_{k}\right\}$. We will prove that for every i $C_{i}=D_{j}$ for some unique j .
For this first we prove that for every i there is some $j \ni C_{i} \subseteq D_{j}$.
Since $C_{i} \neq \phi \& D_{1} \cup D_{2} \cup \ldots \ldots \cup D_{k}=V(G), C_{i} \cap D_{j} \neq \phi$ for some j

Claim

$\mathrm{C}_{\mathrm{i}} \subseteq \mathrm{D}_{\mathrm{j}}$

Proof

Suppose $\mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}} \neq \phi$ for some j \& for some $\mathrm{j}^{\prime} \mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}} \neq \neq \phi$. For the sake of simplicity we assume that C_{i} intersects only these two sets D_{j} \& $\mathrm{D}_{\mathrm{j}^{\prime}}$

Let $\mathrm{C}_{\mathrm{i}^{\prime}}=\mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}} \& \mathrm{C}_{\mathrm{i}^{\prime \prime}}=\mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}^{\prime}}$
$\therefore \mathrm{C}_{\mathrm{i}^{\prime}} \cup \mathrm{C}_{\mathrm{i}^{\prime \prime}}=\mathrm{C}_{\mathrm{i}}$
Now we assign a new colouring to vertices of G as follows.
For every $\mathrm{r} \neq \mathrm{i}$ the colours of vertices of the colour class C_{r} are unchanged.
If $x \in C_{i} \cap D_{j}$ then we assign colour i ' to x.
If $x \in C_{i} \cap D_{j^{\prime}}$ then we assign colour $i^{\prime \prime}$ to x.
Then we have a new complementary chromatic colouring of G consisting of colours $1,2,3, \ldots . ., i-1, i^{\prime}, i^{\prime \prime}, i+1, \ldots \ldots, k$.
This colouring uses $\mathrm{k}+1$ colours \& it is a complementary colouring. This contradicts the fact that the complementary chromatic number of G is k .
$\therefore \mathrm{C}_{\mathrm{i}} \cap \mathrm{D}_{\mathrm{j}} \neq \phi$ for unique j .
$\therefore \mathrm{C}_{\mathrm{i}} \subseteq \mathrm{D}_{\mathrm{j}}$ for some unique j .

If C_{i} is a proper subset of D_{j} for some i then $C_{1} \cup C_{2} \cup \ldots \ldots \cup C_{k} \neq V(G)$ because $\mathrm{D}_{1} \cup \mathrm{D}_{2} \cup \ldots \ldots \cup \mathrm{D}_{\mathrm{k}}=\mathrm{V}(\mathrm{G})$.

Thus $C_{i}=D_{j}$ for some unique j.
$\therefore\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \ldots, \mathrm{C}_{\mathrm{k}}\right\}=\left\{\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots . ., \mathrm{D}_{\mathrm{k}}\right\}$.
This proves that this colouring is unique.

Proposition 2.11

Let G be a graph and $v \in V(G)$. Let f be a complementary colouring of G then the restriction g of f on $G-v$ is also a complementary colouring of $G-v$.

Proof

Let x and y be two vertices of $G-v$ such that $g(x) \neq g(y)$ then $f(x) \neq f(y)$.
Since f is a complementary colouring, it follows that x and y are adjacent vertices of G and therefore adjacent vertices of $G-v$.

THEOREM 2.12

Let G be a graph \& $v \in V(G)$. Then the following statements are equivalent
(1) $\chi_{C}(G-v)<\chi_{C}(G)$
(2) v is adjacent to every other vertex of G.
(3) $\{\mathrm{v}\}$ is colour class in the complementary chromatic colouring of G.

Proof

(1) $\Rightarrow(3)$

Suppose $\{v\}$ is not a colour class in the complementary chromatic colouring of G. Therefore there is a vertex different from v which has the same colour as v. Now, consider the restriction g of the complementary chromatic colouring f of G. There is a vertex u in $G-v$ such that $f(u)=f(v)$. Then g is a complementary chromatic colouring of $G-v$. Also g is a complementary colouring of $G-v$.
$\therefore \chi_{C}(G-v) \geq$ The number of colours used by $g=$ The number of colours used by $f=\chi_{C}(G)$
$\therefore \chi_{C}(\mathrm{G}-\mathrm{v}) \geq \chi_{\mathrm{C}}(\mathrm{G})$
This is a contradiction.
$\therefore\{\mathrm{v}\}$ is colour class in the complementary chromatic colouring of G .
(3) $\Rightarrow(2)$

For any complementary colouring of a graph G a vertex in any colour class is adjacent to every vertex in every other colour class. Since $\{v\}$ is a colour class, $\{v\}$ is adjacent to every vertex of every other colour class. Equivalently v is adjacent to every other vertex of G .
Therefore (2) is proved.
$(2) \Rightarrow(1)$
Suppose v is adjacent to every other vertex of G.
Consider any complementary chromatic colouring of $\mathrm{G}-\mathrm{v}$ which uses colours $1,2,3, \ldots \ldots, \mathrm{k}$. Now, assign colour $\mathrm{k}+1$ to v . Then obviously we get a complementary colouring of vertices of G which uses $\mathrm{k}+1$ colours.
$\therefore \chi_{\mathrm{C}}(\mathrm{G}) \geq \mathrm{k}+1>\mathrm{k}=\chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})$
$\therefore \chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})<\chi_{\mathrm{C}}(\mathrm{G})$

Corollary 2.13

Let G be a graph $\& \mathrm{v} \in \mathrm{V}(\mathrm{G})$. If $\chi_{\mathrm{c}}(\mathrm{G}-\mathrm{v})=\chi_{\mathrm{c}}(\mathrm{G})$ then $\{\mathrm{v}\}$ is not a colour class in the complementary chromatic colouring of G.

Complementary Colour Transversal Vertex Covering Set

Proof

Since $\chi_{c}(G-v)=\chi_{c}(G)$
$\chi_{c}(\mathrm{G}-\mathrm{v}) \nless \chi_{\mathrm{c}}(\mathrm{G})$
So, $\{\mathrm{v}\}$ is not a colour class in the complementary chromatic colouring of G .

Definition 2.14 (Complementary Colour Transversal Vertex Covering Set)

Let G be a graph. A subset S of $V(G)$ is said to be a complementary colour transversal vertex covering set of G if

1. S is a transversal for the complementary chromatic colouring of G and
2. S is a vertex covering set of G

This set is also called CCTVC set of G.

Example 2.15

For the graph mentioned in example $-2.4, S=\left\{v_{1}, v_{3}\right\}$ is a CCTVC set.

Definition 2.16 (Complementary Colour Transversal Vertex Covering Number)

Let G be a graph and $S \subseteq V(G)$. If S is a complementary colour transversal vertex covering set of G whose cardinality is minimum among all complementary colour transversal vertex covering set of G then S is said to be a minimum complementary colour transversal vertex covering set of G.

The cardinality of such a set is called complementary colour transversal vertex covering number (or CCTVC Number) of G. It is denoted as $\alpha_{*} \mathrm{c}(\mathrm{G})$.

THEOREM 2.17

Let G be a graph. Then for G only one of the following two possibilities holds.
(1) $\alpha_{*} \mathrm{c}(\mathrm{G})=\alpha_{0}(\mathrm{G})$
(2) $\alpha_{*} \mathrm{c}(\mathrm{G})=\alpha_{0}(\mathrm{G})+1$

Proof

Let G be a graph. Consider any complementary chromatic colouring of G and suppose $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \ldots, \mathrm{C}_{\mathrm{k}}$ are the colour classes corresponding to this colouring. Let S be a maximum independent subset of G so that $|S|=\beta_{0}(G)$. Now S is a subset of C_{i} for some unique i. Suppose S is a proper subset of C_{i} then,
(1) $V(G)-S$ is a minimum vertex covering set of G.
(2) $V(G)-S$ is a colour transversal for this complementary colouring of G

Therefore, $\mathrm{V}(\mathrm{G})-\mathrm{S}$ is a minimum vertex covering set as well as a complementary colour transversal vertex covering set.

Since $\alpha_{*}(G) \geq \alpha_{0}(G)$ it follows that $\alpha_{*} \mathrm{c}(G)=\alpha_{0}(G)$ in this case.
Suppose S is a subset of C_{i} and $S=C_{i}$ then $V(G)-S$ is a vertex covering set but it is not a transversal for this colouring. Let x be any vertex of S then the set $(V(G)-S) \cup\{x\}$ is a CCTVC set of G.

Let $T=(V(G)-S) \cup\{x\}$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G})=|\mathrm{T}|=|\mathrm{V}(\mathrm{G})-\mathrm{S}|+1=\alpha_{0}(\mathrm{G})+1$
Thus for any graph G only one of the following two possibilities holds
(1) $\alpha_{*} \mathrm{c}(\mathrm{G})=\alpha_{0}(\mathrm{G})$
(2) $\alpha_{*} \mathrm{c}(\mathrm{G})=\alpha_{0}(\mathrm{G})+1$

Theorem 2.18

If G is a complete graph then for any vertex v of G
(1) $\chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})<\chi_{\mathrm{C}}(\mathrm{G})$
(2) $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$

Proof

Result (1) follows from the Theorem - 2.17
(2) Suppose $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$. Since G is a complete graph $\chi_{\mathrm{C}}(\mathrm{G})=\mathrm{n}$ and $\alpha_{*} \mathrm{c}(\mathrm{G})=\mathrm{n}$ for any $\mathrm{v} \in \mathrm{V}(\mathrm{G})$, $\mathrm{G}-\mathrm{v}$ is also a complete graph.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\mathrm{n}-1<\mathrm{n}=\alpha_{*} \mathrm{c}(\mathrm{G})$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$

Theorem 2.19

Let G be a graph with $\beta_{0}(\mathrm{G}) \geq 2$. Let $\mathrm{v} \in \mathrm{V}(\mathrm{G}) \ni \chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})<\chi_{\mathrm{C}}(\mathrm{G})$ then $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$

Proof

Since $\beta_{0}(G) \geq 2$, G is not a complete graph. First suppose that $\alpha_{*} C(G)=\alpha_{0}(G)$.
Let S be a minimum vertex covering set of G. Now, $V(G)-S$ is a maximum independent set of G.
$\therefore \mathrm{v} \notin \mathrm{V}(\mathrm{G})-\mathrm{S}\left(\because \mathrm{v}\right.$ is adjacent to every other vertex of $\left.\mathrm{G} \& \beta_{0}(\mathrm{G}) \geq 2\right)$ and therefore $\mathrm{v} \in \mathrm{S}$.
Now, $S_{1}=S-\{v\}$ is a vertex covering set of $G-v$ also S_{1} is a colour transversal for the complementary chromatic colouring of $\mathrm{G}-\mathrm{v}$ which is induced from the complementary chromatic colouring of G.
$\therefore \mathrm{S}_{1}$ is a CCTVC set of $\mathrm{G}-\mathrm{v}$.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v}) \leq\left|\mathrm{S}_{1}\right|<|\mathrm{S}|=\alpha_{*} \mathrm{c}(\mathrm{G})$
Suppose $\alpha_{*} \mathrm{c}(\mathrm{G})=\alpha_{0}(\mathrm{G})+1$
Let S be a minimum CCTVC set of G then $v \in S$ because $\{v\}$ is a colour class in the unique complementary chromatic colouring of G.

Now, let $\mathrm{S}_{1}=\mathrm{S}-\{\mathrm{v}\}$ then S_{1} is a CCTVC set of $\mathrm{G}-\mathrm{v}$.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v}) \leq\left|\mathrm{S}_{1}\right|=\alpha_{0}(\mathrm{G})<\alpha_{*} \mathrm{c}(\mathrm{G})$
$\therefore \alpha_{*} c(\mathrm{G}-\mathrm{v})<\alpha_{*} c(\mathrm{G})$

Theorem 2.20

Let G be a graph $\& \mathrm{v} \in \mathrm{V}(\mathrm{G})$. If $\chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})=\chi_{\mathrm{C}}(\mathrm{G})$ then $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v}) \leq \alpha_{*} \mathrm{c}(\mathrm{G})$

Proof

Since $\chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})=\chi_{\mathrm{C}}(\mathrm{G}),\{\mathrm{v}\}$ is not a colour class in the complementary chromatic colouring of G . Let S be a minimum CCTVC set of G.

Case 1: v $\notin \mathrm{S}$
Then S is a vertex covering set of $G-v$ \& since it is a colour transversal of G it contains a vertex u different from v such that u has the same colour as v.
Thus S is a CCTVC set in $G-v$.
Case 2: $\mathrm{v} \in \mathrm{S}$
Suppose S contains a vertex u different from v which has the same colour as v. Then $S-\{v\}$ is a vertex covering set of $\mathrm{G}-\mathrm{v}$ and it is also a colour transversal for the complementary chromatic colouring of $\mathrm{G}-\mathrm{v}$.

Complementary Colour Transversal Vertex Covering Set

Suppose $\mathrm{v} \in \mathrm{S}$ \& there is no other vertex which has the same colour as v \& which is in S.
In this case let u be a vertex different from v such that u has the same colour as v .
Let $S_{1}=(S-\{v\}) \cup\{u\}$
Then S_{1} is a CCTVC set.
From both the cases above it follows that $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v}) \leq \alpha_{*} \mathrm{c}(\mathrm{G})$
Now, we consider the possibility when $\chi_{C}(G-v)>\chi_{C}(G)$.
Let $\left\{C_{1}, C_{2}, \ldots \ldots, C_{j}\right\}$ be the set of all colour classes of $G(j \geq 1)$ and let $\left\{D_{1}, D_{2}, \ldots \ldots, D_{k}\right\}$ be the set of all colour classes of $\mathrm{G}-\mathrm{v}$.

THEOREM 2.21

$\chi_{C}(G-v)>\chi_{C}(G)$ iff
(1) There are at least two colour classes of $G-v$ which are all subsets of the colour class C which contains $\mathrm{v} \&$ there union $=\mathrm{C}-\{\mathrm{v}\}$ and v is non-adjacent with some vertex in every such colour class.
(2) Other colour classes of $G-v$ are just the colour classes of G different from C.

Proof

(1) Suppose $\chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})>\chi_{\mathrm{C}}(\mathrm{G})$ then $\mathrm{k}>\mathrm{j}$

Now, each colour class D_{i} intersect some colour class C_{r} of G. Suppose $D_{i} \cap C_{r} \neq \phi \& D_{i} \cap C_{r} \cdot \neq \phi$. Now, let $\mathrm{D}_{\mathrm{i}} \cap \mathrm{C}_{\mathrm{r}}=\mathrm{D}_{\mathrm{i}^{\prime}} \& \mathrm{D}_{\mathrm{i}} \cap \mathrm{C}_{\mathrm{r}} \cdot=\mathrm{D}_{\mathrm{i}}$,
Then we can assign two distinct colours of vertices of $D_{i}, \& D_{i}$, in place of the single colour of D_{i}. This will increase the number of colour used in complementary colouring of $G-v$. Which is a contradiction.
$\therefore \mathrm{D}_{\mathrm{i}} \cap \mathrm{C}_{\mathrm{r}} \neq \phi$ for some unique r .
$\therefore \mathrm{D}_{\mathrm{i}} \subseteq \mathrm{C}_{\mathrm{r}}$ for some unique r .
Also, there are colour classes of $G-v$ which intersect the colour class C containing v. Therefore, there are colour classes which are subsets of C. Suppose there are only m colour classes of $G-v$ which are containing in C and $\mathrm{m}<\mathrm{k}-\mathrm{j}+1$.

Now, we provide a new colouring of G as follows.
Assign the same colour as that of C to all the vertices which belong to the m colour classes mentioning above. Do not change the colours of the remaining $j-m$ colour classes which are disjoint from C. Thus we get a complementary chromatic colouring of G consisting of $\mathrm{k}-\mathrm{m}+1$ colours, which is greater than j . This is a contradiction as j is the highest number of colours which is assign to vertices of G so that resulting colouring is complementary colouring.

Suppose there are m colour classes of $G-v$ which are containing in C and $m>k-j+1$.
Then $\mathrm{k}-\mathrm{m}<\mathrm{j}-1$
Thus it must be true that the remaining $k-m$ colour classes of $G-v$ are contained in $j-1$ colour classes of G. Which is impossible because $\mathrm{k}-\mathrm{m}<\mathrm{j}-1$.
Thus, $\mathrm{m}<\mathrm{k}-\mathrm{j}+1 \& \mathrm{~m}>\mathrm{k}-\mathrm{j}+1$ are impossibilities. Therefore, $\mathrm{m}=\mathrm{k}-\mathrm{j}+1$
Since C is a colour class in G containing $\mathrm{v} \&$ union of the above mentioned colour classes $=\mathrm{C}-\{\mathrm{v}\}$, v must be non-adjacent to some vertex in the union $\&$ therefore v must be non-adjacent to some vertex in some colour class.

Claim

Now, we prove that v is non-adjacent with some vertex in every colour class of $G-v$ which is contained in C.

Proof of The Claim

Suppose there is a colour class of $G-v$ say D such that $D \subset C \& v$ is adjacent with every vertex of D. Then we can assign a colour to the vertices of D which is different from $v \&$ it is also different from the colours of other colour classes of G.

Thus we get a complementary colouring of G which consists of $j+1$ colours. This contradicts the fact that complementary chromatic number of $G=j$. Therefore, there is no colour class of $G-v$ which is contained in $\mathrm{D} \& \mathrm{v}$ is adjacent with every vertex of that colour class.
(2) Now, consider the remaining $k-(k-j+1)=j-1$ colour classes of $G-v$. Since there are $j-1$ colour classes of G different from C, each colour class is contained in a unique colour class of G. Since the union of both the colour classes $=V(G)$, this $j-1$ colour classes of $G-v$ are exactly the colour classes different from C.
Conversely suppose (1) and (2) holds then it follows that
The number of colour classes of $G-v>$ The number of colour classes of G
$\therefore \chi_{C}(\mathrm{G}-\mathrm{v})>\chi_{\mathrm{C}}(\mathrm{G})$

THEOREM 2.22

Let G be a graph $\& v \in V(G)$. Suppose $\chi_{C}(G-v)>\chi_{C}(G)$ than any of the following three possibilities can hold
(1) $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})>\alpha_{*} \mathrm{c}(\mathrm{G})$
(2) $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\alpha_{*} \mathrm{c}(\mathrm{G})$
(3) $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$

Proof

First suppose that $\underline{\alpha}_{0} \underline{(G-v)<\alpha_{0} \underline{(G)} \text { then there is a minimum vertex covering set } S \text { of } G \text { such that } v . r e r ~}$ $\in S$. Let $M=V(G)-S$ then M is a maximum independent subset of $G \& v \notin M$.
Now, $\mathrm{M} \subseteq \mathrm{C}_{\mathrm{i}}$ for some i
Case (1) M is a proper subset of C_{i}
Then $V(G)-M=S$ is a minimum vertex covering set $\&$ it is also a colour transversal of G.
$\therefore \mathrm{S}$ is a CCTVC set of $\mathrm{G} \&|\mathrm{~S}|=\mathrm{n}-\beta_{0}(\mathrm{G})=\alpha_{0}(\mathrm{G})$
Since M does not contain v, M is also a maximum independent subset of $G-v$. Therefore M is a subset of D_{r} for some unique r.

If M is a proper subset of D_{r} then Let $G_{1}=G-v$
$\therefore S_{1}=V\left(G_{1}\right)-M$ is a minimum vertex covering set of $G-v \&$ it is also a colour transversal of $\mathrm{G}-\mathrm{v}$.
$\therefore \mathrm{S}_{1}$ is a CCTVC set of $\mathrm{G}-\mathrm{v} \&\left|\mathrm{~S}_{1}\right|=\mathrm{n}-1-\beta_{0}(\mathrm{G})$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$
Now, suppose $M=D_{r}$. Let $x \in D_{r}$
Consider the set $S_{1}=\left(V\left(G_{1}\right)-M\right) \cup\{x\}$ then S_{1} is a vertex covering set \& it is also a colour transversal of $G-v$.

Also $\left|S_{1}\right|=\alpha_{0}(G)+1$
$\therefore \mathrm{S}_{1}$ is a CCTVC set of $\mathrm{G}-\mathrm{v}$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\left|\mathrm{S}_{1}\right|=\mathrm{n}-\beta_{0}(\mathrm{G})=\alpha_{*} \mathrm{c}(\mathrm{G})$
Case (2)Suppose $M=C_{i}$ for some i. Let $x \in M$.

Now, consider the set $T=(V(G)-M) \cup\{x\}$ then T is a vertex covering set of $G \&$ it is also a colour transversal for complementary chromatic colouring of G . Thus T is a minimum CCTVC set.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G})=|\mathrm{T}|=\mathrm{n}-\beta_{0}(\mathrm{G})+1$
Suppose M is a proper subset of some colour class D_{r} of the complementary chromatic colouring of $G-v$. Then $T_{1}=V\left(G_{1}\right)-M$ is is a minimum vertex covering set of $G-v \&$ it is also a colour transversal for this colouring of $G-v$.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\left|\mathrm{T}_{1}\right|=\mathrm{n}-1-\beta_{0}(\mathrm{G})$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$
On the other hand if $\mathrm{M}=\mathrm{D}_{\mathrm{r}}$ forsome r then let $\mathrm{y} \in \mathrm{D}_{\mathrm{i}}$
Then $T_{2}=\left(V\left(G_{1}\right)-M\right) \cup\{y\}$ is a vertex covering set \& it is also a colour transversal of $G-v$.
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\mathrm{n}-1-\beta_{0}(\mathrm{G})+1=\mathrm{n}-\beta_{0}(\mathrm{G})$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$
Now suppose $\underline{\alpha}_{0}(\underline{G}-\mathrm{v})=\alpha_{\underline{0}}(\underline{G})$
In this case $v \notin S$ for any minimum vertex covering set S of G.
$\therefore \mathrm{v} \in \mathrm{M}$ for every maximum independent subset M of G . Now, M is a subset of C_{i} for some colour class C_{i}. Since $v \in M \Rightarrow v \in C_{i}$

Suppose M is a proper subset of C_{i} then as proved above $\alpha_{*} c(G)=n-\beta_{0}(G)$

1. Suppose $M-\{v\}$ is a proper subset of D_{r} for some colour class D_{r} of $G-v$.

Then $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\mathrm{n}-1-\left(\beta_{0}(\mathrm{G})-1\right)=\mathrm{n}-\beta_{0}(\mathrm{G})$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\alpha_{*} \mathrm{c}(\mathrm{G})$
2. Suppose $M-\{v\}=D_{r}$ for some colour class D_{r} of $G-v$.

Then $\alpha_{*} c(G-v)=n-1-\left(\beta_{0}(G)-2\right)=n-\beta_{0}(G)+1$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})>\alpha_{*} \mathrm{c}(\mathrm{G})$
Suppose $M=C_{i}$ for some colour class C_{i} of G.
Then $\alpha_{*} c(G)=n-\beta_{0}(G)+1$
Suppose $M-\{v\}$ is a proper subset of D_{r} for some colour class D_{r} of $G-v$. As proved in above theorem $D_{r} \& D_{s}$ are subsets of C_{i} for at least two distinct values $r \& s$ then $M-\{v\}$ will be a proper subset of $D_{r} \cup D_{s}$ and therefore $M-\{v\}$ will be proper subset of $C-\{v\}$.
$\therefore \mathrm{M}$ is proper subset of C_{i} which is contradiction.
$\therefore \mathrm{M}$ is proper subset of D_{r} is not possible for any r .
Hence, $\alpha_{*} c(G-v)=n-1-\left(\beta_{0}(G)-2\right)=n-\beta_{0}(G)+1$
$\therefore \alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})=\alpha_{*} \mathrm{c}(\mathrm{G})$

Example 2.23

Consider the graph G in example 2.4
Here, $\chi_{C}(G)=2 \& \chi_{C}\left(G-v_{4}\right)=3$
$\therefore \chi_{C}(G-v)>\chi_{C}(G)$
Also observe that
$\alpha_{*} \mathrm{c}(\mathrm{G})=2 \quad \& \alpha_{*} \mathrm{c}\left(\mathrm{G}-\mathrm{v}_{4}\right)=3$
Hence, $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})>\alpha_{*} \mathrm{c}(\mathrm{G})$

Example 2.24

Consider the path graph with four vertices $G=P_{4}$

Fig. 2
Here, $\chi_{C}(G)=1 \& \chi_{C}\left(G-v_{4}\right)=2$
$\therefore \chi_{\mathrm{C}}(\mathrm{G}-\mathrm{v})>\chi_{\mathrm{C}}(\mathrm{G})$
Also observe that
$\alpha_{*} \mathrm{c}(\mathrm{G})=2=\alpha_{*} \mathrm{c}\left(\mathrm{G}-\mathrm{v}_{4}\right)$
Hence, $\alpha_{*} c(G-v)=\alpha_{*} c(G)$

3. Concluding Remark

There are enough number of examples of graph G for which $\chi_{C}(G-v)>\chi_{C}(G)$ and $\alpha_{*} c(G-v) \geq \alpha_{*} c(G)$. However, we do not know a graph G for which $\chi_{C}(G-v)>\chi_{C}(G)$ and $\alpha_{*} \mathrm{c}(\mathrm{G}-\mathrm{v})<\alpha_{*} \mathrm{c}(\mathrm{G})$.

REFERENCES

[1] Thakkar D. and Kothiya A., Uniqueness of $\chi^{\text {c }}$ - Partition of a Graph, International Journal of Mathematics Trends and Technology 33,16-18,(2016).
[2] Thakkar D. and Kothiya A., Complementary Coloring of Graphs, PRAJNA - Journal of Pure and Applied Sciences 20,79-80,(2012).
[3] Thakkar D. and Dave V., Colour Transversal Vertex Covering Set, International Journal of Scientific and Innovative Mathematical Research 4,37-44,(2016).
[4] Thakkar D. and Bosamiya J., Graph Critical with respect to Independent Domination, Journal of Discrete Mathematical Sciences \& Cryptography 16,179-186,(2013).
[5] Thakkar D. and Bosamiya J., Vertex Covering Number of a Graph, Mathematics Today 27,30-35 (2011).
[6] West D., Introduction to Graph Theory, 2nd Edition, Pearson Education, India, (2001)
[7] HaynesT., HedetniemiS. and Slater P., Domination in Graphs Advanced Topics, Marcel Dekker, Inc., New York, (1998).
[8] HaynesT., HedetniemiS. and Slater P., Fundamental of Domination in Graphs, Marcel Dekker, Inc., New York, (1998)
[9] Manoharan R., Dominating Colour Transversals in Graphs, Ph.D. Thesis, Bharathidasan University, India, (2009).

AUTHORS' BIOGRAPHY

Dr.D.K.Thakkar, is in the Department of Mathematics of Saurashtra University, Rajkot. His areas of interest are Graph Theory, Topology and Discrete Mathematics. He has published over 45 research papers in various journals.

Ms. V. R. Dave, is a young research student who likes to work in a challenging environment. She is working as an Assistant Professor in Shree M. and N. Virani Science College. Her area of interest is Graph Theory.

