Complementary Colour Transversal Vertex Covering Set

D.K.Thakkar¹, V. R. Dave²

¹Department of Mathematics, Saurashtra University Campus, University Road, Rajkot, India ²Shree M. & N. Virani Science College, Kalavad Road, Rajkot, India

Abstract: In this paper we introduce new concepts namely Complementary Colour Transversal Vertex Covering Set (CCTVC Set) and Complementary Colour Transversal Vertex Covering Number (CCTVC Number) of a graph. If G is a graph then this number is denoted as $\alpha_{*c}(G)$. We have also observed that $\alpha_{*c}(G) = \alpha_0(G)$ or $\alpha_{*c}(G) = \alpha_0(G) + 1$ for any graph G, Where $\alpha_0(G)$ is the vertex covering number of a graph G.We proved several theorems regarding the effect of removing a vertex from a graph on this number.

Keywords: Transversal, Colour Transversal, Vertex Covering Set, Vertex Covering Number, Complementary Colour Transversal Vertex Covering Set, Complementary Colouring, Complementary Chromatic Number, Complementary Colour Transversal Vertex Covering Number.

AMS Subject Classification (2010): 05C15, 05C69.

1. INTRODUCTION

The concept of a vertex covering set is well known and has been studied by several authors. The identity $\alpha_0(G) + \beta_0(G) = |V(G)| (\alpha_0(G) = The vertex covering number & \beta_0(G) = The independence number) is well known. The concept of colour transversal dominating set was studied in detail in Ph.D. Thesis of Manoharan [9]. We introduce the concepts of colour transversal vertex covering set and colour transversal vertex covering number of a graph in [3].$

In this paper we consider the concepts of complementary colouring and complementary chromatic number of a graph. These concepts were introduced in [2]. Now we introduce the concepts of Complementary Colour Transversal Vertex Covering Set (CCTVC Set) and Complementary Colour Transversal Vertex Covering Number (CCTVC Number) of a graph. The operation of removing a vertex from a graph may increase, decrease or keep the number unchanged. We consider the effect of this operation on complementary colour transversal vertex covering number (CCTVC Number) of a graph.

We assume that our graphs are finite, simple and undirected. If G is a graph then V(G) will denote the vertex set of G and E(G) will denote the edge set of G.

2. RESULTS AND DISCUSSION

Definition 2.1 (Complementary Colouring) [2]

Let G be a graph. The Colouring f of vertices of G is said to be a complementary colouring if whenever vertices u and v have different colours then they must be adjacent.

Definition 2.2 (Complementary Chromatic Number) [2]

Let G be a graph. The maximum numbers of colours which can be assigned to the vertices so that the resulting colouring is a complementary colouring is called the complementary chromatic number of G & it is denoted as χ_C (G). This complementary colouring is called complementary chromatic colouring.

Remark 2.3

- > The complementary colouring of a graph need not be a proper colouring.
- ➢ If a graph G has having complementary colouring then it may happen that two vertices are adjacent and they have the same colour.

- If a graph has been given a complementary colouring then two non-adjacent vertices cannot have different colours. Thus, in any independent set all the vertices must have the same colours.
- It may be noted that in general a colour class corresponding to a complementary colouring need not be an independent set.

Example 2.4

Consider the graph with vertices v_1 , v_2 , v_3 , v_4

Consider complementary colouring in which v₁, v₂, v₃, v₄ receives colours as follows.

 v_1 -colour 1, v_2 -colour 1, v_3 -colour 2, v_4 -colour 1

Here the colour classes corresponding to colour 1 is not an independent set.

Proposition 2.5 [2]

Let G be a graph. Then

$$\succ \chi C(G) \leq \chi(G)$$

 $\succ \chi C(G) = \chi(G)$ iff G is a complete k – partite graph.

Proposition 2.6

Let G be a graph and suppose the colour classes of a complementary chromatic colouring of G are C_1, C_2, \ldots, C_k . Let T be a transversal of these colour classes then T is a dominating set.

PROOF

Let us assume that T intersect each C_i in a singleton set and therefore let $T \cap C_i = \{v_i\}$ for $i = 1, 2, \ldots, k$. Let z be a vertex such that z does not belongs to T. Suppose $z \in C_i$ for some i. Then z is adjacent to v_j for every $j \neq i$.

Thus, T is a dominating set.

Corollary 2.7

Let G be a graph. Then $\gamma(G) \leq \chi_c(G)$

Proof

From the above proposition $\gamma(G) \leq |T| = \chi_c(G)$

Proposition 2.8

Let G be a graph and C_1, C_2, \ldots, C_k be the colour classes corresponding to some complementary chromatic colouring of G. Then for every colour class C_i with $|C_i| \ge 2$ & for every $v \in C_i \exists$ some $u \in C_i \ni u$ is not adjacent to v.

Proof

Suppose the statement does not hold.

Then for some colour class say C_1 with $|C_1| \ge 2$ there is a vertex v in C_1 such that v is adjacent to every vertex of C_1 . Also v is adjacent to every vertex of every other colour class. Thus v is adjacent to every other vertex of G. Now, suppose we have used colours 1, 2, 3, ..., k in complementary

chromatic colouring of G. We may assign a new colour k + 1 to v and keep the colours of other vertices unchanged. Then we get a complementary colouring of G with k + 1 colours. This is a contradiction because complementary chromatic number of G = k.

Therefore the statement of the proposition must be true.

Proposition 2.9

Let G be a graph and suppose C_1, C_2, \ldots, C_k are the colour classes corresponding to some complementary colouring of G. Let T be an independent subset of G. Then $T \subseteq C_i$ for some i.

PROOF

If T is a singleton set then obviously $T \subseteq C_i$ for some i.

Suppose T has at least two elements and suppose $T \cap C_i \neq \phi$ and $T \cap C_i \neq \phi$ for some $i \neq j$.

Let $v \in T \cap C_i$ and $u \in T \cap C_j$. Since $v \in C_i$ and $u \in C_j$ and $i \neq j$ v and u must be adjacent. This contradicts the fact that T is an independent set.

 \therefore T cannot intersect two distinct colour classes. Also $T \cap C_i$ is non-empty because the colour classes forms a partition of V (G). Thus $T \subseteq C_i$ for some i.

The following theorem is proved in [1]. We present a different proof for the sake of completeness.

THEOREM 2.10

Let G be a graph then the complementary chromatic colouring of G is unique. (in the sense that any two complementary chromatic colouring of G give rise to the same colour classes)

Proof

Suppose there are two complementary chromatic colouring of G whose colour classes are $\{ C_1, C_2, \ldots, C_k \}$ and $\{ D_1, D_2, \ldots, D_k \}$. We will prove that for every i $C_i = D_j$ for some unique j.

For this first we prove that for every i there is some $j \ni C_i \subseteq D_{j.}$

Since $C_i \neq \phi \& D_1 \cup D_2 \cup \dots \cup D_k = V(G)$, $C_i \cap D_j \neq \phi$ for some j

Claim

 $C_i \subseteq D_j$

Proof

Suppose $C_i \cap D_j \neq \phi$ for some j & for some j' $C_i \cap D_j \neq \phi$. For the sake of simplicity we assume that C_i intersects only these two sets $D_j \& D_{j'}$.

Let $C_{i'} = C_i \cap D_j \& C_{i''} = C_i \cap D_{j'}$

 $\therefore C_{i'} \cup C_{i''} = C_i$

Now we assign a new colouring to vertices of G as follows.

For every $r \neq i$ the colours of vertices of the colour class C_r are unchanged.

If $x \in C_i \cap D_i$ then we assign colour i' to x.

If $x \in C_i \cap D_{i'}$ then we assign colour i'' to x.

Then we have a new complementary chromatic colouring of G consisting of colours $1,2,3, \ldots, i-1, i', i'', i+1, \ldots, k$.

This colouring uses k + 1 colours & it is a complementary colouring. This contradicts the fact that the complementary chromatic number of G is k.

 $\therefore C_i \cap D_i \neq \phi$ for unique j.

 \therefore C_i \subseteq D_i for some unique j.

If C_i is a proper subset of D_j for some i then $C_1 \cup C_2 \cup \ldots \cup C_k \neq V(G)$ because $D_1 \cup D_2 \cup \ldots \cup D_k = V(G)$.

Thus $C_i = D_j$ for some unique j.

 \therefore { C₁, C₂, ..., C_k} = { D₁, D₂, ..., D_k }.

This proves that this colouring is unique.

Proposition 2.11

Let G be a graph and $v \in V(G)$. Let f be a complementary colouring of G then the restriction g of f on G - v is also a complementary colouring of G - v.

Proof

Let x and y be two vertices of G - v such that $g(x) \neq g(y)$ then $f(x) \neq f(y)$.

Since f is a complementary colouring, it follows that x and y are adjacent vertices of G and therefore adjacent vertices of G - v.

THEOREM 2.12

Let G be a graph & $v \in V(G)$. Then the following statements are equivalent

(1) $\chi_{C}(G - v) < \chi_{C}(G)$

(2) v is adjacent to every other vertex of G.

(3) $\{v\}$ is colour class in the complementary chromatic colouring of G.

Proof

 $(1) \Rightarrow (3)$

Suppose {v} is not a colour class in the complementary chromatic colouring of G. Therefore there is a vertex different from v which has the same colour as v. Now, consider the restriction g of the complementary chromatic colouring f of G. There is a vertex u in G - v such that f(u) = f(v). Then g is a complementary chromatic colouring of G - v. Also g is a complementary colouring of G - v.

 $\therefore \chi_C(G - v) \ge$ The number of colours used by g = The number of colours used by $f = \chi_C(G)$

 $\therefore \chi_{\rm C}({\rm G}-{\rm v}) \geq \chi_{\rm C}({\rm G})$

This is a contradiction.

 \therefore {v} is colour class in the complementary chromatic colouring of G.

 $(3) \Rightarrow (2)$

For any complementary colouring of a graph G a vertex in any colour class is adjacent to every vertex in every other colour class. Since $\{v\}$ is a colour class, $\{v\}$ is adjacent to every vertex of every other colour class. Equivalently v is adjacent to every other vertex of G.

Therefore (2) is proved.

 $(2) \Rightarrow (1)$

Suppose v is adjacent to every other vertex of G.

Consider any complementary chromatic colouring of G - v which uses colours 1, 2, 3,, k. Now, assign colour k + 1 to v. Then obviously we get a complementary colouring of vertices of G which uses k + 1 colours.

$$\therefore \chi_{C}(G) \geq k+1 > k = \chi_{C}(G - v)$$

 $\therefore \chi_{C}(G - v) < \chi_{C}(G)$ Corollary 2.13

Let G be a graph & $v \in V(G)$. If $\chi_c(G - v) = \chi_c(G)$ then $\{v\}$ is not a colour class in the complementary chromatic colouring of G.

Proof

Since $\chi_c(G - v) = \chi_c(G)$

 $\chi_{c}(G - v) \lessdot \chi_{c}(G)$

So, {v} is not a colour class in the complementary chromatic colouring of G.

Definition 2.14 (Complementary Colour Transversal Vertex Covering Set)

Let G be a graph. A subset S of V(G) is said to be a complementary colour transversal vertex covering set of G if

- 1. S is a transversal for the complementary chromatic colouring of G and
- 2. S is a vertex covering set of G

This set is also called CCTVC set of G.

Example 2.15

For the graph mentioned in example -2.4, $S = \{v_1, v_3\}$ is a CCTVC set.

Definition 2.16 (Complementary Colour Transversal Vertex Covering Number)

Let G be a graph and $S \subseteq V(G)$. If S is a complementary colour transversal vertex covering set of G whose cardinality is minimum among all complementary colour transversal vertex covering set of G then S is said to be a minimum complementary colour transversal vertex covering set of G.

The cardinality of such a set is called complementary colour transversal vertex covering number (or CCTVC Number) of G. It is denoted as α_*c (G).

THEOREM 2.17

Let G be a graph. Then for G only one of the following two possibilities holds.

(1)
$$\alpha_* c(G) = \alpha_0(G)$$

(2) $\alpha_* c(G) = \alpha_0(G) + 1$

Proof

Let G be a graph. Consider any complementary chromatic colouring of G and suppose C_1, C_2, \ldots, C_k are the colour classes corresponding to this colouring. Let S be a maximum independent subset of G so that $|S| = \beta_0$ (G). Now S is a subset of C_i for some unique i. Suppose S is a proper subset of C_i then,

(1) V(G) - S is a minimum vertex covering set of G.

(2) V(G) - S is a colour transversal for this complementary colouring of G

Therefore, V(G) - S is a minimum vertex covering set as well as a complementary colour transversal vertex covering set.

Since α_* (G) $\geq \alpha_0$ (G) it follows that α_*c (G) = α_0 (G) in this case.

Suppose S is a subset of C_i and S = C_ithen V(G) – S is a vertex covering set but it is not a transversal for this colouring. Let x be any vertex of S then the set (V(G) – S) \cup {x} is a CCTVC set of G.

Let T = (V(G) – S)
$$\cup$$
 {x}

 $\therefore \alpha_* c(G) = |T| = |V(G) - S| + 1 = \alpha_0(G) + 1$

Thus for any graph G only one of the following two possibilities holds

(1) $\alpha_* c(G) = \alpha_0(G)$

(2) $\alpha_* c(G) = \alpha_0(G) + 1$

THEOREM 2.18

If G is a complete graph then for any vertex v of G

(1) $\chi_{C}(G - v) < \chi_{C}(G)$

(2) $\alpha_*c(G - v) < \alpha_*c(G)$

PROOF

Result (1) follows from the Theorem -2.17

(2) Suppose |V(G)| = n. Since G is a complete graph $\chi_C(G) = n$ and $\alpha_*c(G) = n$ for any $v \in V(G)$, G - v is also a complete graph.

 $\therefore \alpha_* c \ (G - v) \ = n - 1 < n = \alpha_* c(G)$

 $\therefore \alpha_* c \; (G \text{ - } v) \; < \alpha_* c(G)$

THEOREM 2.19

Let G be a graph with $\beta_0(G) \ge 2$. Let $v \in V(G) \ni \chi_C(G - v) < \chi_C(G)$ then $\alpha_*c(G - v) < \alpha_*c(G)$

Proof

Since $\beta_0(G) \ge 2$, G is not a complete graph. First suppose that $\alpha_* c$ (G) = α_0 (G).

Let S be a minimum vertex covering set of G. Now, V(G) - S is a maximum independent set of G.

 $\therefore v \notin V(G) - S$ ($\because v$ is adjacent to every other vertex of G & $\beta_0(G) \ge 2$) and therefore $v \in S$.

Now, $S_1 = S - \{v\}$ is a vertex covering set of G - v also S_1 is a colour transversal for the complementary chromatic colouring of G - v which is induced from the complementary chromatic colouring of G.

 \therefore S₁ is a CCTVC set of G – v.

 $\therefore \alpha_* c(G - v) \leq \mid S_1 \mid < \mid S \mid = \alpha_* c(G)$

Suppose $\alpha_* c(G) = \alpha_0(G) + 1$

Let S be a minimum CCTVC set of G then $v \in S$ because $\{v\}$ is a colour class in the unique complementary chromatic colouring of G.

Now, let $S_1 = S - \{v\}$ then S_1 is a CCTVC set of G - v.

 $\therefore \alpha_* c (G - v) \leq |S_1| = \alpha_0 (G) < \alpha_* c(G)$

 $\therefore \alpha_* c \ (G \text{ - } v) \ < \alpha_* c(G)$

THEOREM 2.20

Let G be a graph & $v \in V(G)$. If $\chi_C(G - v) = \chi_C(G)$ then $\alpha_*c(G - v) \le \alpha_*c(G)$

Proof

Since $\chi_C(G - v) = \chi_C(G)$, {v} is not a colour class in the complementary chromatic colouring of G. Let S be a minimum CCTVC set of G.

Case 1: $v \notin S$

Then S is a vertex covering set of G - v & since it is a colour transversal of G it contains a vertex u different from v such that u has the same colour as v.

Thus S is a CCTVC set in G - v.

Case 2: $v \in S$

Suppose S contains a vertex u different from v which has the same colour as v. Then $S - \{v\}$ is a vertex covering set of G - v and it is also a colour transversal for the complementary chromatic colouring of G - v.

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Suppose $v \in S$ & there is no other vertex which has the same colour as v & which is in S.

In this case let u be a vertex different from v such that u has the same colour as v.

Let $S_1 = (S - \{v\}) \cup \{u\}$

Then S₁ is a CCTVC set.

From both the cases above it follows that $\alpha_*c(G - v) \leq \alpha_*c(G)$

Now, we consider the possibility when $\chi_C(G - v) > \chi_C(G)$.

Let { C_1, C_2, \ldots, C_j } be the set of all colour classes of G ($j \ge 1$) and let { D_1, D_2, \ldots, D_k } be the set of all colour classes of G - v.

THEOREM 2.21

 $\chi_{\rm C}({\rm G}-{\rm v}) > \chi_{\rm C}({\rm G})$ iff

(1) There are at least two colour classes of G - v which are all subsets of the colour class C which contains v & there union = $C - \{v\}$ and v is non-adjacent with some vertex in every such colour class.

(2) Other colour classes of G - v are just the colour classes of G different from C.

Proof

(1) Suppose $\chi_C(G - v) > \chi_C(G)$ then k > j

Now, each colour class D_i intersect some colour class C_r of G. Suppose $D_i \cap C_r \neq \phi \& D_i \cap C_{r'} \neq \phi$. Now, let $D_i \cap C_r = D_{i'} \& D_i \cap C_{r'} = D_{i''}$

Then we can assign two distinct colours of vertices of $D_{i'}$ in place of the single colour of D_{i} . This will increase the number of colour used in complementary colouring of G - v. Which is a contradiction.

 \therefore D_i \cap C_r $\neq \phi$ for some unique r.

 \therefore D_i \subseteq C_r for some unique r.

Also, there are colour classes of G - v which intersect the colour class C containing v. Therefore, there are colour classes which are subsets of C. Suppose there are only m colour classes of G - v which are containing in C and m < k - j + 1.

Now, we provide a new colouring of G as follows.

Assign the same colour as that of C to all the vertices which belong to the m colour classes mentioning above. Do not change the colours of the remaining j - m colour classes which are disjoint from C. Thus we get a complementary chromatic colouring of G consisting of k - m + 1 colours, which is greater than j. This is a contradiction as j is the highest number of colours which is assign to vertices of G so that resulting colouring is complementary colouring.

Suppose there are m colour classes of G –v which are containing in C and m > k - j + 1.

Then k - m < j - 1

Thus it must be true that the remaining k -m colour classes of G -v are contained in j -1 colour classes of G. Which is impossible because k - m < j - 1.

Thus, m < k - j + 1 & m > k - j + 1 are impossibilities. Therefore, m = k - j + 1

Since C is a colour class in G containing v & union of the above mentioned colour classes = $C - \{v\}$, v must be non-adjacent to some vertex in the union & therefore v must be non-adjacent to some vertex in some colour class.

Claim

Now, we prove that v is non-adjacent with some vertex in every colour class of G - v which is contained in C.

PROOF OF THE CLAIM

Suppose there is a colour class of G –v say D such that $D \subset C \& v$ is adjacent with every vertex of D. Then we can assign a colour to the vertices of D which is different from v & it is also different from the colours of other colour classes of G.

Thus we get a complementary colouring of G which consists of j + 1 colours. This contradicts the fact that complementary chromatic number of G = j. Therefore, there is no colour class of G - v which is contained in D & v is adjacent with every vertex of that colour class.

(2) Now, consider the remaining k - (k - j + 1) = j - 1 colour classes of G - v. Since there are j - 1 colour classes of G different from C, each colour class is contained in a unique colour class of G. Since the union of both the colour classes = V(G), this j - 1 colour classes of G - v are exactly the colour classes different from C.

Conversely suppose (1) and (2) holds then it follows that

The number of colour classes of G - v > The number of colour classes of G

 $\therefore \chi_{C}(G - v) > \chi_{C}(G)$

THEOREM 2.22

Let G be a graph & $v \in V(G)$. Suppose $\chi_C(G - v) > \chi_C(G)$ than any of the following three possibilities can hold

(1) $\alpha_* c(G - v) > \alpha_* c(G)$

(2) $\alpha_* c(G - v) = \alpha_* c(G)$

(3) $\alpha_* c(G - v) < \alpha_* c(G)$

PROOF

First suppose that $\underline{\alpha_0(G - v)} < \underline{\alpha_0(G)}$ then there is a minimum vertex covering set S of G such that $v \in S$. Let M = V(G) - S then M is a maximum independent subset of G & $v \notin M$.

Now, $M \subseteq C_i$ for some i

Case (1)M is a proper subset of C_i

Then V(G) - M = S is a minimum vertex covering set & it is also a colour transversal of G.

 \therefore S is a CCTVC set of G & | S | = n - $\beta_0(G) = \alpha_0(G)$

Since M does not contain v, M is also a maximum independent subset of G - v. Therefore M is a subset of D_r for some unique r.

If M is a proper subset of D_r then Let $G_1 = G - v$

 \therefore S₁ = V(G₁) – M is a minimum vertex covering set of G – v & it is also a colour transversal of G – v.

 \therefore S₁ is a CCTVC set of G - v & |S₁| = n - 1 - β_0 (G)

 $\therefore \alpha_* c(G - v) < \alpha_* c(G)$

Now, suppose $M = D_r$. Let $x \in D_r$

Consider the set S_1 = ($V(G_1)-M$) \cup $\{x\}$ then S_1 is a vertex covering set & it is also a colour transversal of G-v.

Also $|S_1| = \alpha_0(G) + 1$

 \therefore S₁ is a CCTVC set of G – v

 $\therefore \alpha_* c(G - v) = |S_1| = n - \beta_0(G) = \alpha_* c(G)$

<u>Case (2)</u>Suppose $M = C_i$ for some i. Let $x \in M$.

Now, consider the set $T = (V(G) - M) \cup \{x\}$ then T is a vertex covering set of G & it is also a colour transversal for complementary chromatic colouring of G. Thus T is a minimum CCTVC set.

$$\therefore \alpha_* c(G) = |T| = n - \beta_0(G) + 1$$

Suppose M is a proper subset of some colour class D_r of the complementary chromatic colouring of G - v. Then $T_1 = V(G_1) - M$ is a minimum vertex covering set of G - v & it is also a colour transversal for this colouring of G - v.

$$\therefore \alpha_* c(G - v) = |T_1| = n - 1 - \beta_0(G)$$

 $\therefore \alpha_* c(G \text{ - } v) \ < \alpha_* c(G)$

On the other hand if $M = D_r$ for some r then let $y \in D_i$

Then $T_2 = (V(G_1) - M) \cup \{y\}$ is a vertex covering set & it is also a colour transversal of G - v.

$$\therefore \alpha_* c(G - v) = n - 1 - \beta_0(G) + 1 = n - \beta_0(G)$$

$$\therefore \alpha_* c(G - v) < \alpha_* c(G)$$

Now suppose $\underline{\alpha}_0(\mathbf{G} - \mathbf{v}) = \underline{\alpha}_0(\mathbf{G})$

In this case $v \notin S$ for any minimum vertex covering set S of G.

 $\therefore v \in M$ for every maximum independent subset M of G. Now, M is a subset of C_i for some colour class C_i . Since $v \in M \Rightarrow v \in C_i$

Suppose M is a proper subset of C_i then as proved above $\alpha_*c(G) = n - \beta_0(G)$

1. Suppose $M - \{v\}$ is a proper subset of D_r for some colour class D_r of G - v.

Then $\alpha_* c(G - v) = n - 1 - (\beta_0(G) - 1) = n - \beta_0(G)$

$$\therefore \alpha_* c(G - v) = \alpha_* c(G)$$

2. Suppose $M - \{v\} = D_r$ for some colour class D_r of G - v.

Then
$$\alpha_*c(G - v) = n - 1 - (\beta_0(G) - 2) = n - \beta_0(G) + 1$$

$$:: \alpha_* c(G - v) > \alpha_* c(G)$$

Suppose $M = C_i$ for some colour class C_i of G.

Then $\alpha_* c(G) = n - \beta_0(G) + 1$

Suppose $M - \{v\}$ is a proper subset of D_r for some colour class D_r of G - v. As proved in above theorem $D_r \& D_s$ are subsets of C_i for at least two distinct values r & s then $M - \{v\}$ will be a proper subset of $D_r \cup D_s$ and therefore $M - \{v\}$ will be proper subset of $C - \{v\}$.

 \therefore M is proper subset of C_i which is contradiction.

 \therefore M is proper subset of D_r is not possible for any r.

Hence, $\alpha_* c(G - v) = n - 1 - (\beta_0(G) - 2) = n - \beta_0(G) + 1$

$$\therefore \alpha_* c(G - v) = \alpha_* c(G)$$

Example 2.23

Consider the graph G in example 2.4

Here,
$$\chi_C(G) = 2 & \chi_C(G - v_4) = 3$$

 $\therefore \chi_C(G - v) > \chi_C(G)$
Also observe that

 $\alpha_* c(G) = 2 \& \alpha_* c(G - v_4) = 3$

Hence, $\alpha_*c(G - v) > \alpha_*c(G)$

Example 2.24

Consider the path graph with four vertices $G = P_4$

Here, $\chi_C(G) = 1$ & $\chi_C(G - v_4) = 2$

 $\therefore \chi_C \left(G \text{ - } v \right) \, > \chi_C \left(G \right)$

Also observe that

 $\alpha_*c(G) = 2 = \alpha_*c(G - v_4)$

Hence, $\alpha_*c(G - v) = \alpha_*c(G)$

3. CONCLUDING REMARK

There are enough number of examples of graph G for which χ_C (G - v) > χ_C (G) and $\alpha_*c(G - v) \ge \alpha_*c(G)$. However, we do not know a graph G for which χ_C (G - v) > χ_C (G) and $\alpha_*c(G - v) < \alpha_*c(G)$.

REFERENCES

- [1] Thakkar D. and Kothiya A., Uniqueness of χ^c Partition of a Graph, International Journal of Mathematics Trends and Technology 33,16 18,(2016).
- [2] Thakkar D. and Kothiya A., Complementary Coloring of Graphs, PRAJNA Journal of Pure and Applied Sciences 20,79 80 ,(2012).
- [3] Thakkar D. and Dave V., Colour Transversal Vertex Covering Set, International Journal of Scientific and Innovative Mathematical Research 4,37 44,(2016).
- [4] Thakkar D. and Bosamiya J., Graph Critical with respect to Independent Domination, Journal of Discrete Mathematical Sciences & Cryptography 16,179-186,(2013).
- [5] Thakkar D. and Bosamiya J., Vertex Covering Number of a Graph, Mathematics Today 27,30-35 (2011).
- [6] West D., Introduction to Graph Theory, 2nd Edition, Pearson Education, India, (2001)
- [7] HaynesT., HedetniemiS. and Slater P., *Domination in Graphs Advanced Topics*, Marcel Dekker, Inc., New York, (1998).
- [8] HaynesT., HedetniemiS. and Slater P., *Fundamental of Domination in Graphs*, Marcel Dekker, Inc., New York, (1998)
- [9] Manoharan R., Dominating Colour Transversals in Graphs, Ph.D. Thesis, Bharathidasan University, India, (2009).

AUTHORS' BIOGRAPHY

Dr.D.K.Thakkar, is in the Department of Mathematics of Saurashtra University, Rajkot. His areas of interest are Graph Theory, Topology and Discrete Mathematics. He has published over 45 research papers in various journals.

Ms. V. R. Dave, is a young research student who likes to work in a challenging environment. She is working as an Assistant Professor in Shree M. and N. Virani Science College. Her area of interest is Graph Theory.