Note on the Vector Space $\mathcal{B}(H)$ of Bounded Operators an a Separable Hilbert's space H

Joseph S.V. Massamba

Département de Mathématique et Informatique, Faculté des Sciences Université Pédagogique Nationale (UPN) Kinshasa, RD. Congo

Abstract: This paper aims at solving the problem of knowing whether we can find the vector space $\mathcal{B}(H)$ of bounded operators on a separable Hibert's space H and a scalar product and eventually decide on the completeness of hermitian norm. I did not only succeed to confer the structure of Hilbert's space to the vector space $\mathcal{B}(H)$, but also to establish equality between norm operator and hermitian norm on $\mathcal{B}(H)$.

Keywords: Vector space, scalar product, completeness, separable, Hilbert space, Banach space, norm operator, Hilbert basis

USEFUL MATTERS

1.1 Scalar Product

Let E be a vector space and a map denoted $g: ExE \to \mathbb{K}(\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C})$ filling following properties :

$$(i) \forall x, y, z \in E: g(x + y, z) = g(x, z) + g(y, z)$$

(ii) ∀ x, y, z ∈ E: g(x, y + z) = g(x, y) + g(x, z)
(iii) ∀ x, y ∈ E and r ∈ K: g(rx, y) = r(x, y)
(iv) ∀ x, y ∈ E and r ∈ K: g(x, ry) = $\bar{r}(x, y)$

 $(v) \forall x, y \in E : g(x, y) = \overline{g(y, x)}$

 $(iv) \forall x \in E : g(x,x) > 0$ if $x \neq 0$ andg(x,x) = 0if x = 0

The so-defined map g is called hermitian form or simply a scalar product on E. Note that if $\mathbb{K} = \mathbb{R}$ then g is a bilinear form and, consequently properties (*ii*) and (*v*) are dropped [1, 2, 3].

1.2 Two Notions Generated by the Scalar Product

1.2.1. First Notion

The map denoted

$$\| \quad \| : E \to \mathbb{R}$$
$$x \mapsto \|x\| = \sqrt{\langle x, x \rangle}$$

With properties :

 $(i) \forall x \in E, ||x|| > 0$ if $x \neq 0$ and ||x|| = 0ifx = 0

 $(ii) \forall x \in E$ and a scalar r : ||rx|| = r||x||

 $(iii) \forall x, y \in E : ||x + y|| \le ||x|| + ||y||$

This mapis called hermitian norm on E

1.2.1. Second Notion

Inequality $|(x, y)| \le ||x|| ||y|| \forall x, y \in E$, is called Cauchy-Schwarz's inequality.

1.3 Hilbert's Space

1.3.1 Definition

Let E be a vector space provided with a scalar product; it is said that E is a space of Hilbert if the associated hermitian norm is complete; in other words, if any Cauchy's sequence in E is convergent; a space of Hilbert E is known as separable if it possesses a dense and countable part or simply a hilbertian basis.

1.3.2 Remark

In this note, H is aseparable complex Hilbert's space with infinite size whose scalar product, norm and hilbertian basisare respectively denoted $(,), \| \|$ and $b = (e_i)_{i \ge 1}$; its null element 0_H is simply denoted 0; the bounded operators, also called continuous operators on H, are appointed by capital letters A, B, C..; their set is denoted $\mathcal{B}(H)$; $B_H = \{x \in H : \|x\| \le 1\}$ is the closed unit bowlof H; any vector x of H is represented by $x = \sum_{i=1}^{\infty} u_i e_i$ and $\sum_{i=1}^{\infty} |u_i|^2 = \|x\|^2$ with $u = (x, e_i)$ (1); for any operator A and $e_i \in b$, one will write Ae_i instead of $A(e_i)$, the field of definition of an operator A on H is dense in H, which means that $\overline{A} = H$, \overline{A} being the adherence or the closing of A; thus, for both bounded operators A and B on H and $e_i \in b$, Ae_i and Be_i are vectors of H such as $(Ae_i, Be_i) \in \mathbb{K} =$ $(\mathbb{R} ou \mathbb{C})[2]$; the norm operator on H is, in general denoted and defined by $\|A\|_1 = sup\{\|Ax\|: x \in BH$ or, in particular $A1 = supAeii : i \in h$.

1.3.3 Proposition

 \forall A a bounded operator on H and a vector $x \in B_H$, one has $||Ax||^2 \leq (\sum_{i=1}^{\infty} |u_i| ||Ae_i||)^2$

Proof

Onehas $||Ax||^2 = ||A(\sum_{i=1}^{\infty} u_i e_i)||^2$

$$= \left\|\sum_{i=1}^{\infty} A(u_i, e_i)\right\|^2 = \left\|\sum_{i=1}^{\infty} u_i Ae_i\right\|^2$$

 $= (\sum_{i=1}^{\infty} u_i A e_i, \sum_{i=1}^{\infty} u_i A e_i)$

$$\leq \left| \left(\sum_{i=1}^{\infty} u_i A e_i , \sum_{i=1}^{\infty} u_i A e_i \right) \right|$$

[scalar product on H]

 $\leq \|\sum_{i=1}^{\infty} u_i A e_i\| \|\sum_{i=1}^{\infty} u_i A e_i\|$ [inequality of Cauchy-Schwarz]

 $= \sum_{i=1}^{\infty} \|u_i A e_i\| \sum_{i=1}^{\infty} \|u_i A e_i\| \text{[continuity of the norm]}$

$$= \sum_{i=1}^{\infty} |u_i| ||u_i A e_i|| \sum_{i=1}^{\infty} |u_i|| ||A e_i|| = \left(\sum_{i=1}^{\infty} |u_i|| ||A e_i||\right)^2$$

Hence one obtains $||Ax||^2 \le (\sum_{i=1}^{\infty} |u_i| ||Ae_i||)^2 [1, 2, 3]$

SEEKING EFFICIENT SCALAR PRODUCT

1.4 Method

Let H be a separable complex space of Hilbert with infinite size; one resorts to the convergence of sequences in normalized spaces, in fact, spaces of Banach $\mathbb{K} = (\mathbb{R} \text{ or } \mathbb{C})[1]$ and, also with the exploitation of elements presented above such as if A and B are two bounded operators on H and

 $e_i \in b$ then the fields of definition of A and B are dense, $(Ae_i, Be_i) \in \mathbb{C}$ and $|Ae_i, Be_i| \leq ||Ae_i|| ||Be_i||$ the inequality of Cauchy-Schwarz.

1.5 Establishment

Let A and B be two bounded operators on H and $e_i \in b$ then; $(Ae_i, Be_i) \in \mathbb{C}$; one considers the numerical series $\sum_{i=1}^{\infty} \frac{1}{2^i} |(Ae_i, Be_i)|$; it is clear that one has successively

$$\begin{split} \sum_{i=1}^{\infty} \frac{1}{2^i} |(Ae_i, Be_i)| &\leq \sum_{i=1}^{\infty} \frac{1}{2^i} ||Ae_i|| ||Be_i|| \qquad \text{[inequality of Cauchy-Schwarz]} \\ &\leq ||A||_1 ||B||_1 < \infty \text{[for} \sum_{i=1}^{\infty} \frac{1}{2^i} = 1\text{]} \end{split}$$

or simply the inequality $\sum_{i=1}^{\infty} \frac{1}{2^i} |(Ae_i, Be_i)| < \infty$ which means that the obtained series $\sum_{i=1}^{\infty} \frac{1}{2^i} |(Ae_i, Be_i)|$ converges in \mathbb{R}^+ ; then it results from it that the series $\sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i)$ converge absolutely in \mathbb{R} and, consequently, it converges in \mathbb{C} ; that is to say that $\sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i) \in \mathbb{C}[3]$ such as, for any bounded operator A on H, $\sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Ae_i) = \sum_{i=1}^{\infty} \frac{1}{2^i} ||Ae_i||^2 \ge 0$ which means that $\sum_{i=1}^{\infty} \frac{1}{2^i} ||Ae_i||^2 \ge 0$ for all $A \neq 0$ and $\sum_{i=1}^{\infty} \frac{1}{2^i} ||Ae_i||^2 = 0$ when A = 0; the scalar obtained is denoted $< A, B >_2 = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i)$ for any bounded operator A on H; now it is shown that it is independent of the choice of the used hilbertian basis; indeed, if $d = (g_t)_{t \ge 1}$ another hilbertian basis of H then one obtains successively

$$(Ae_i, Be_i) = (Ae_i, g_t)(g_t, Be_i) = (e_i, A * g_t)(B * g_t, e_i) = (B * g_t, A * g_t) = (Ag_t, Bg_t)$$

It results from it that one obtains the equality $\sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i) = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ag_t, Bg_t)$; however, that is not enough to conclude that \langle , \rangle_2 is a scalar product on H; it should be shown that \langle , \rangle_2 enjoys the properties (1.1).

1.6 Theorem

The map <, $>_2: H \times H \rightarrow \mathbb{C}$ enjoys the properties: (1.1)Indeed, one has respectively

(*i*) For all three bounded operators A, B, C on H and: $e_i \in \varphi$

$$< A + B, C >_2 = \sum_{i=1}^{\infty} \frac{1}{2^i} [(Ae_i, Ce_i) + (Be_i, Ce_i)] = < A, C >_2 + < B, C >_2$$

(*ii*) Whatever two bounded operators A, B on H and: $e_i \in \varphi$

$$\langle A,B \rangle_2 = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i) = \overline{\sum_{i=1}^{\infty} \frac{1}{\acute{e}^i} (Be_i, Ae_i)} = \overline{\langle B, A \rangle_2}$$

(*iii*) For both bounded operators A, B on H , λ a scalar and: $e_i \in \varphi$

$$<\lambda A, B>_{2} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} (\lambda Ae_{i}, Be_{i}) = \lambda \sum_{i=1}^{\infty} \frac{1}{2^{i}} (Ae_{i}, Be_{i}) \text{ while}$$
$$< A, \lambda B>_{2} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} (\lambda Ae_{i}, Be_{i}) = \bar{\lambda} \sum_{i=1}^{\infty} \frac{1}{2^{i}} (Ae_{i}, Be_{i})$$

(*iv*) Whatever abounded operator A on H and $e_i \in \varphi$ one has on the one hand, $\langle A, A \rangle_2 = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Ae_i) = \sum_{i=1}^{\infty} \frac{1}{2^i} ||Ae_i||^2 \ge 0$ with $i = 1, 2, 3, ..., e_i \in \varphi$ and, on the other hand $\langle A, A \rangle_2 = 0 \Rightarrow i = 1 \ge 12 i A = 12 = 0$ for all i = 1, 2, 3, ... and; $e_i \in \varphi$ that means that; A = 0 thus it is concluded-T that

 $<>_2$ is a scalar product on the vector space $\mathcal{B}(H)$; the proof is finished; now one can affirm that:

RESULTS

1.7 Theorem

Let H be a separable complex space of Hilbert with infinite size whose scalar product is denoted (,), $\varphi = (e_i)_{i \ge 1}$ one of its hilbertian basis and the map defined by

$$<,>_2: \left(\mathcal{B}(H)\right)^2 \longrightarrow \mathbb{C}: (A,B) \longmapsto < A,B>_2 = \sum\nolimits_{i=1}^\infty \frac{1}{2^i} (Ae_i,Be_i)$$

whatever two bounded operators A, B on H and $e_i \in \varphi$ then \langle , \rangle_2 is a scalar product on $\mathcal{B}(H)$; the hermitian norm associated to the scalar product is denoted and defined by $||A||_2 = (\sum_{i=1}^{\infty} ||Ae_i||^2)^{1/2}$ for any bounded operator A on H.

1.8 Remark

=

The vector space $\mathcal{B}(H)$ is thus provided with two norms, namely the norm operator $\| \|_1$ and the hermitiannorm $\| \|_2$; is there exist a bond between these two norms? As norms are real numbers, one resorts to the following technique to answer the asked question.

1.9 Comparing $\| \|_1$ and $\| \|_2$

3.3.1. Seeking the answer

It is necessary and enough to show $(k) \parallel \parallel_1 \leq \parallel \parallel_2$ and $(p) \parallel \parallel_2 \leq \parallel \parallel_1$ for that, one resorts to the proposal (1.3.3)

$$(k) \parallel \parallel_1 \leq \parallel \parallel_2$$

Whatever a bounded operator A on H and a vector $x \in B_H$

 $||Ax||^2 \le (\sum_{i=1}^{\infty} |u_i| ||Ae_i||)^2$ [proposal (1.3.3)]

$$\leq \left(\sum_{i=1}^{\infty} |u_i| \|Ae_i\|_2\right)^2 = \left(\sum_{i=1}^{\infty} |u_i| \|A\|_2 \|e_i\|\right)^2$$

 $[for ||A||_2 = \sup\{||Ae_i||: i = 1, 2, 3, \dots\}]$

$$= \sum_{i=1}^{\infty} |u_i|^2 ||A||_2^2 = ||A||_2^2 [for \sum_{i=1}^{\infty} |u_i|^2 = ||e_1||^2 = 1]$$

Briefly $||Ax||^2 \le ||A||_2^2$ or simply $||Ax|| \le ||A||_2$; it from of results well that $||A||_1 = sup\{||Ax||: ||x|| \le 1 \le A2$ or simply $A1 \le A2$.

$$(p)\| \|_2 \le \| \|_1$$

LetAbe a bounded operator on H; then there are the following inequalities:

 $||A||_2^2 = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Ae_i)$ [the square of the standard || ||_2]

$$\leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} |(Ae_{i}, Ae_{i})| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} ||Ae_{i}|| ||Ae_{i}||$$

[inequality of Cauchy-Schwarz]

$$= \sum_{i=1}^{\infty} \frac{1}{2^{i}} (\|Ae_{i}\|)^{2} \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \|Ae_{1}\|_{1}^{2}$$

$$[for\|A\|_{1} = sup\{\|Ae_{i}\|: e_{i} \in b\}]$$

$$= \|A\|_{1}^{2} \|e_{i}\|^{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}}$$

$$\|A\|_{1}^{2}$$

$$[for\sum_{i=1}^{\infty} \frac{1}{2^{i}} = 1 = \|e_{i}\|^{2}]$$

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)

Briefly $||A||_2^2 \le ||A||_1^2$ or clearly $||A||_2 \le ||A||_1$.

3.3.2. Obtained result

The obtained results $||A||_1 \le ||A||_2$ and $||A||_2 \le ||A||_1$ mean that; $|| ||_2 = || ||_1$ what we nicely express in these terms:

3.3.3. Theorem

Let H be a separable complex space of Hilbert with infinite size, $(e_i)_{i\geq 1}$ a hilbertian basis of H and the norms $\| \|_1$ and $\| \|_2$ on the vector space $\mathcal{B}(H)$; then the two norms are equal, in other words one has the equality $\| \|_1 = \| \|_2$.

1.10 Conclusion

The two theorems (3.1) and (3.3.3) established clearly that, on the one hand the scalar $\langle A, B \rangle_{\gamma} = \sum_{i=1}^{\infty} \frac{1}{2^i} (Ae_i, Be_i)$ is a square form and, on the other hand bothnorms(operator and hermitian) on the vector space $\mathcal{B}(H)$ are equal; as the norm operator $\| \|_1$ is complete, it results from it that the hermitiannorm $\| \|_2$ is too; that is to say that, provided with the norm $\| \|_2$. the vector space $\mathcal{B}(H)$ is a space of Banach; what leads to the short following conclusion:

Let $\mathcal{B}(H)$ be the separable complex vector space with infinite size; provided with the scalar product $\langle , \rangle_{\gamma} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} (Ae_{i}, Be_{i}), \mathcal{B}(H)$ is a space of Hilbert.

ACKNOWLEDGEMENTS

I am grateful to Donatien Ntantu Ibula, my PhD advisor for helpful discussions on the original manuscript. I deeply thank Francis Mayala and Ruffin-Benoît Ngoie, the former for typing the text of the present paper and the latter for translating the original manuscript from French to English.

REFERENCES

- [1] Dieudonné J., Eléments d'analyse moderne. Gautier Villars, Paris, 1974.
- [2] Schwartz U, Analyse hilbertienne, Hermann, Paris, 1979.
- [3] Kolmogorov A, Fomine S., *Eléménts de la théorie des fonctions et de l'analyse fonctionnelle*, French Trad., Editions Mir, Moscou, 1974

AUTHOR'S BIOGRAPHY

MasambaSalaVoka, is senior lecturer at UniversitéPédagogiqueNationale, Kinshasa (RDC). He teaches Infinitesimal Analysis, Functional Anlysis and General Topology. He is also a PhD. Student at the same University.