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Abstract: This paper aims at solving the problem of knowing whether we can find the vector space ℬ 𝐻  of 

bounded operators on a separable Hibert’s space 𝐻 and a scalar product and eventually decide on the 

completeness of hermitian norm. I did not only succeed to confer the structure of Hilbert’s space to the vector 

space ℬ 𝐻 , but also to establish equality between norm operator and hermitian norm on ℬ 𝐻 . 
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USEFUL MATTERS 

1.1 Scalar Product 

Let E be a vector space and a map denoted 𝑔 : 𝐸𝑥𝐸 → 𝕂 𝕂 = ℝ or ℂ  filling following properties :  

 𝑖  ∀ 𝑥,𝑦, 𝑧 ∈ 𝐸:𝑔 𝑥 + 𝑦, 𝑧 = 𝑔 𝑥, 𝑧 + 𝑔 𝑦, 𝑧  

 𝑖𝑖 ∀ 𝑥,𝑦, 𝑧 ∈ 𝐸:𝑔 𝑥,𝑦 + 𝑧 = 𝑔 𝑥,𝑦 + 𝑔 𝑥, 𝑧  

 𝑖𝑖𝑖 ∀ 𝑥,𝑦 ∈ 𝐸 and  𝑟 ∈ 𝕂 ∶  𝑔 𝑟𝑥, 𝑦 = 𝑟 𝑥,𝑦  

 𝑖𝑣 ∀ 𝑥,𝑦 ∈ 𝐸 and  𝑟 ∈ 𝕂:𝑔 𝑥, 𝑟𝑦 = 𝑟  𝑥,𝑦  

 𝑣 ∀ 𝑥,𝑦 ∈ 𝐸 : 𝑔 𝑥,𝑦 = 𝑔 𝑦, 𝑥           

 𝑖𝑣 ∀ 𝑥,∈ 𝐸 :  𝑔 𝑥, 𝑥 > 0if𝑥 ≠ 0and𝑔 𝑥, 𝑥 = 0if  𝑥 = 0 

The so-defined map 𝑔 is called hermitian form or simply a scalar product on E. Note that if 𝕂 =  ℝ 

then 𝑔 is a bilinear form and, consequently properties  𝑖𝑖  and  𝑣 are dropped [1, 2, 3]. 

1.2 Two Notions Generated by the Scalar Product 

1.2.1. First Notion 

The map denoted  

   :𝐸 → ℝ 

𝑥 ↦  𝑥 =  < 𝑥, 𝑥 > 

With properties : 

 𝑖 ∀ 𝑥 ∈ 𝐸,  𝑥 > 0if𝑥 ≠ 0 and 𝑥 = 0if𝑥 = 0 

 𝑖𝑖 ∀ 𝑥 ∈ 𝐸andascalar r :   𝑟𝑥 = 𝑟 𝑥  

 𝑖𝑖𝑖 ∀ 𝑥, 𝑦 ∈ 𝐸 :  𝑥 + 𝑦 ≤  𝑥 +  𝑦   
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This mapis called hermitian norm on E 

1.2.1. Second Notion 

Inequality   𝑥,𝑦  ≤  𝑥  𝑦  ∀ 𝑥,𝑦 ∈ 𝐸, is called Cauchy-Schwarz’s inequality. 

1.3 Hilbert’s Space 

1.3.1 Definition 

Let E be a vector space provided with a scalar product; it is said that E is a space of Hilbert if the 

associated hermitian norm is complete;   in other words, if any Cauchy’s sequence in E is convergent;  

a space of Hilbert E is known as separable if it possesses a dense and countable part or simply a 

hilbertian basis. 

1.3.2 Remark 

In this note, H is aseparable complex Hilbert’s space with infinite size whose scalar product, norm 

and hilbertian basisare respectively denoted   ,  ,    and𝑏 =  𝑒𝑖 𝑖≥1; its null element  0𝐻 is simply 

denoted 0; the bounded operators, also called continuous operators on H, are appointed by capital 

letters A, B, C..; their set is denoted  ℬ 𝐻  ;𝐵𝐻 =  𝑥 ∈ 𝐻:  𝑥 ≤ 1  is the closed unit bowlof H; any 

vector 𝑥 of H is represented by  𝑥 =  𝑢𝑖𝑒𝑖
∞
𝑖=1 and   𝑢𝑖 

2∞
𝑖=1 =  𝑥 2  with  𝑢 =  𝑥, 𝑒𝑖   1 ; for any 

operator A and  𝑒𝑖 ∈ 𝑏 , one will write 𝐴𝑒𝑖  instead of𝐴 𝑒𝑖 , the field of definition of an operator A on 

H is dense in H, which means that 𝐴 = 𝐻,  𝐴  being the adherence or the closing of A; thus, for both 

bounded operators A and B on H and 𝑒î ∈ 𝑏,𝐴𝑒𝑖  and 𝐵𝑒𝑖  are vectors of H such as   𝐴𝑒𝑖  ,𝐵𝑒𝑖 ∈ 𝕂 =

 ℝ 𝑜𝑢 ℂ  [2] ; the norm operator on H is, in general denoted and defined by 𝐴 1 = 𝑠𝑢𝑝  𝐴𝑥 :𝑥 ∈

𝐵𝐻 or, in particular𝐴1=𝑠𝑢𝑝𝐴𝑒𝑖:𝑖∈𝑏. 

1.3.3 Proposition  

∀  A a bounded operator on H anda vector𝑥 ∈ 𝐵𝐻, onehas : 𝐴𝑥 2 ≤    𝑢𝑖   𝐴𝑒𝑖 
∞
𝑖=1  2 

Proof 

Onehas  𝐴𝑥 2 =  𝐴  𝑢𝑖𝑒𝑖
∞
𝑖=1   2 

  =   𝐴 𝑢𝑖 , 𝑒𝑖 
∞

𝑖=1
 

2

=   𝑢𝑖
∞√

𝑖=1
𝐴𝑒𝑖 

2

 

=   𝑢𝑖𝐴𝑒𝑖
∞
𝑖=1 , 𝑢𝑖𝐴𝑒𝑖

∞
𝑖=1                            [scalar product on H ] 

≤    𝑢𝑖𝐴𝑒𝑖
∞

𝑖=1
, 𝑢𝑖𝐴𝑒𝑖

∞

𝑖=1
   

≤   𝑢𝑖𝐴𝑒𝑖
∞
𝑖=1    𝑢𝑖𝐴𝑒𝑖

∞
𝑖=1   [inequality of Cauchy-Schwarz ] 

=   𝑢𝑖𝐴𝑒𝑖 
∞
𝑖=1   𝑢𝑖𝐴𝑒𝑖 

∞
𝑖=1 [continuity of the norm] 

=   𝑢𝑖  𝑢𝑖𝐴𝑒𝑖 
∞

𝑖=1
  𝑢𝑖  𝐴𝑒𝑖 

∞

𝑖=1
=    𝑢𝑖  𝐴𝑒𝑖 

∞

𝑖=1
 

2

 

Hence one obtains 𝐴𝑥 2 ≤    𝑢𝑖  𝐴𝑒𝑖 
∞
𝑖=1  2 [1, 2, 3] 

SEEKING EFFICIENT SCALAR PRODUCT 

1.4 Method 

Let H be a separable complex space of Hilbert with infinite size; one resorts to the convergence of 

sequences in normalized spaces,  in fact, spaces of Banach  𝕂 =   ℝ or ℂ [ 1 ] and, also with the 

exploitation of elements presented above such as if A and B are two bounded operators on H and  



Note on the Vector Space𝓑(𝑯)of Bounded Operators an a Separable Hilbert’s space 𝑯 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 9 

𝑒𝑖 ∈ 𝑏 then the fields of definition of A and B are dense,   𝐴𝑒𝑖 ,𝐵𝑒𝑖 ∈  ℂ  and    𝐴𝑒𝑖 ,𝐵𝑒𝑖  ≤
 𝐴𝑒𝑖  𝐵𝑒𝑖   the inequality of Cauchy-Schwarz.   

1.5 Establishment 

Let  A and B be two bounded operators on H and𝑒𝑖 ∈ 𝑏 then;   𝐴𝑒𝑖 ,𝐵𝑒𝑖 ∈  ℂ ; one considers  the 

numerical series   
1

2𝑖
  𝐴𝑒𝑖 ,𝐵𝑒𝑖  

∞
𝑖=1 ;it is clear that one has successively  

 
1

2𝑖
  𝐴𝑒𝑖 ,𝐵𝑒𝑖  

∞
𝑖=1 ≤  

1

2𝑖
 𝐴𝑒𝑖  𝐵𝑒𝑖 

∞
𝑖=1       [inequality of Cauchy-Schwarz ]  

≤  𝐴 1 𝐵 1 < ∞ [for 
1

2𝑖
∞
𝑖=1 = 1] 

or simply the inequality  
1

2𝑖
  𝐴𝑒𝑖 ,𝐵𝑒𝑖  

∞
𝑖=1 < ∞ which means that the obtained  series 

 
1

2𝑖
  𝐴𝑒𝑖 ,𝐵𝑒𝑖  

∞
𝑖=1 converges in  ℝ+; then it results from it that the series  

1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖 converge 

absolutely in  ℝ and, consequently, it converges inℂ;  that is to say that   
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖 ∈  ℂ[3] such 

as, for any bounded operator 𝐴 on H,   
1

2𝑖
∞       
𝑖=1  𝐴𝑒𝑖 ,𝐴𝑒𝑖 =  

1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 

2 ≥ 0 which means that   

 
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 

2 > 0 for all  𝐴 ≠0 and   
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 

2 = 0 when𝐴 =  0;  the scalar obtained is denoted  

< 𝐴,𝐵 >2=  
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖  for any bounded operator A on H; now it is shown that it is 

independent of the choice of the used hilbertian basis;  indeed, if  𝑑 =  𝑔𝑡 𝑡≥1another hilbertian basis 

of H then one obtains successively 

 𝐴𝑒𝑖 ,𝐵𝑒𝑖 =  𝐴𝑒𝑖 ,𝑔𝑡  𝑔𝑡 ,𝐵𝑒𝑖 =  𝑒𝑖 ,𝐴 ∗ 𝑔𝑡  𝐵 ∗ 𝑔𝑡 , 𝑒𝑖  

=  𝐵 ∗ 𝑔𝑡 ,𝐴 ∗ 𝑔𝑡 =  𝐴𝑔𝑡 ,𝐵𝑔𝑡  

It results from it that one obtains the equality 
1

2𝑖
 𝐴𝑒𝑖 ,𝐵𝑒𝑖 

∞
𝑖=1 =  

1

2𝑖
 𝐴𝑔𝑡 ,𝐵𝑔𝑡 

∞
𝑖=1 ;  however, that is 

not enough to conclude that  < , >2  is a scalar product on H; it should be shown that   < , >2  enjoys 

the properties 1.1 . 

1.6 Theorem  

The map< , >2:𝐻 × 𝐻 → ℂenjoys the properties:   1.1 Indeed, one has respectively 

 𝑖  For all three bounded operators A, B, C   on 𝐻 and:  𝑒𝑖 ∈ 𝜑 

< 𝐴 + 𝐵,𝐶 >2=  
1

2𝑖

∞

𝑖=1
  𝐴𝑒𝑖 ,𝐶𝑒𝑖 +  𝐵𝑒𝑖 ,𝐶𝑒𝑖  =< 𝐴,𝐶 >2+< 𝐵,𝐶 >2 

 𝑖𝑖  Whatever two bounded operators A, B   on H and:  𝑒𝑖 ∈ 𝜑 

< 𝐴,𝐵 >2=  
1

2𝑖

∞

𝑖=1
 𝐴𝑒𝑖 ,𝐵𝑒𝑖 =  

1

é𝑖

∞

𝑖=1
 𝐵𝑒𝑖 ,𝐴𝑒𝑖 

                       
=< 𝐵,𝐴 >2
              

 𝑖𝑖𝑖  For both bounded operators A, B on H  , 𝜆 a scalar  and:  𝑒𝑖 ∈ 𝜑 

< 𝜆𝐴,𝐵 >2=  
1

2𝑖
∞
𝑖=1  𝜆𝐴𝑒𝑖 ,𝐵𝑒𝑖 = 𝜆 

1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖  while  

< 𝐴, 𝜆𝐵 >2=  
1

2𝑖

∞

𝑖=1
 𝜆𝐴𝑒𝑖 ,𝐵𝑒𝑖 = 𝜆  

1

2𝑖

∞

𝑖=1
 𝐴𝑒𝑖 ,𝐵𝑒𝑖  

 𝑖𝑣  Whatever abounded operator A on H and  𝑒𝑖 ∈ 𝜑 one has on the one hand, < 𝐴,𝐴 >2=

 
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐴𝑒𝑖 =  

1

2𝑖
∞
𝑖=1  Aei 

2 ≥ 0 with  𝑖 = 1,2,3,….  ,  𝑒𝑖 ∈ 𝜑 and, on the other hand    <

𝐴,𝐴>2=0⇒ 𝑖=1∞12𝑖Aei2=0  for all  𝑖=1,2,3,….  and;  𝑒𝑖∈𝜑that means that;  𝐴=0thus it is 

concluded-T that     

<>2 is a scalar product on the vector spaceℬ 𝐻 ;  the proof is finished; now one can affirm that:          
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RESULTS  

1.7 Theorem 

Let H be a separable complex space of Hilbert with infinite size whose scalar product is denoted  ,  ,  

𝜑 =  𝑒𝑖 𝑖≥1one of its hilbertian basis and the map defined by  

<, >2:  ℬ 𝐻  
2
⟶ ℂ ∶  𝐴,𝐵 ⟼< 𝐴,𝐵 >2=  

1

2𝑖

∞

𝑖=1
 𝐴𝑒𝑖 ,𝐵𝑒𝑖  

whatever two bounded operators  𝐴, B on H and  𝑒𝑖 ∈ 𝜑  then  <, >2is a scalar product on  ℬ 𝐻 ; the 

hermitian norm associated to the scalar product is denoted and defined by  𝐴 2 =

   𝐴𝑒𝑖 
2∞

𝑖=1  
1

2 for any bounded operator 𝐴 on H.  

1.8 Remark 

The vector space  ℬ 𝐻  is thus provided with two norms, namely the norm operator    1 and the 

hermitiannorm  2;is there exist a bond between these two norms? As norms are real numbers, one 

resorts to the following technique to answer the asked question. 

1.9 Comparing   𝟏 𝐚𝐧𝐝   𝟐 

3.3.1. Seeking the answer 

It is necessary and enough to show   𝑘   1 ≤     2  and   𝑝   2  ≤   1for that, one resorts 

to the proposal   1.3.3  

 𝑘   1 ≤     2 

Whatever a bounded operator A on H and a vector  𝑥 ∈ 𝐵𝐻 

 𝐴𝑥 2 ≤    𝑢𝑖  𝐴𝑒𝑖 
∞
𝑖=1  2 [proposal   1.3.3 ]                

≤    𝑢𝑖  𝐴𝑒𝑖 2

∞

𝑖=1
 

2

=    𝑢𝑖  𝐴 2 𝑒𝑖 
∞

𝑖=1
 

2

 

[for 𝐴 2 = sup  𝐴𝑒𝑖 : 𝑖 = 1,2,3,…  ] 

=    𝑢𝑖 
2 𝐴 2

2∞
𝑖=1 =  𝐴 2

2 [for  𝑢𝑖 
2∞

𝑖=1 =  𝑒1 
2 = 1 ] 

Briefly 𝐴𝑥 2 ≤  𝐴 2
2 or simply 𝐴𝑥 ≤  𝐴 2; it from of results well that   𝐴 1 = 𝑠𝑢𝑝  𝐴𝑥 :  𝑥 ≤

1≤𝐴2or simply   𝐴1≤𝐴2. 

 𝑝   2  ≤   1 

Let𝐴be a bounded operator on H; then there are the following inequalities:  

 𝐴 2
2 =  

1

2𝑖
 𝐴𝑒𝑖 ,𝐴𝑒𝑖 

∞
𝑖=1      [the square of the standard    2 ] 

≤ 
1

2𝑖
 (𝐴𝑒𝑖 ,𝐴𝑒𝑖) 

∞

𝑖=1
≤ 

1

2𝑖
 𝐴𝑒𝑖  𝐴𝑒𝑖 

∞

𝑖=1
 

                              [inequality of Cauchy-Schwarz ]  

=  
1

2𝑖
  𝐴𝑒𝑖  

2
∞

𝑖=1
≤ 

1

2𝑖

∞

𝑖=1
 𝐴𝑒1 1

2 

                                             [for 𝐴 1 = 𝑠𝑢𝑝  𝐴𝑒𝑖 : 𝑒𝑖 ∈ 𝑏  ] 

=  𝐴 1
2 𝑒𝑖 

2  
1

2𝑖

∞

𝑖=1
 

=  𝐴 1
2                                         [for 

1

2𝑖
∞
𝑖=1 = 1 =   𝑒𝑖 

2] 
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Briefly    𝐴 2
2 ≤  𝐴 1

2 or clearly 𝐴 2  ≤  𝐴 1. 

3.3.2. Obtained result 

The obtained results   𝐴 1  ≤  𝐴 2  and   𝐴 2  ≤  𝐴 1 mean that;   2 =   1what we nicely 

express in these terms: 

3.3.3. Theorem 

Let H be a separable complex space of Hilbert with infinite size,   𝑒𝑖 𝑖≥1a hilbertian basis of H and 

the norms    1  and    2on the vector space  ℬ 𝐻  ; then the two norms are equal, in other words 

one has the equality     1 =   2. 

1.10 Conclusion 

The two theorems   3.1   and 3.3.3  established clearly that, on the one hand the scalar  < 𝐴,𝐵 >𝛾=

 
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖  is a square form and, on the other hand bothnorms(operator and hermitian) on the 

vector space  ℬ 𝐻 are equal; as the norm operator    1 is complete, it results from it that the 

hermitiannorm  2 is too; that is to say that, provided with the norm  2. the vector space  ℬ(𝐻) 

is a space of Banach ; what leads to the short following conclusion: 

Letℬ(𝐻) be the separable complex vector space with infinite size;   provided with the scalar product  

<, >𝛾=   
1

2𝑖
∞
𝑖=1  𝐴𝑒𝑖 ,𝐵𝑒𝑖 ,   ℬ(𝐻) is a space of Hilbert. 
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