# Note on the Vector Space $\mathcal{B}(H)$ of Bounded Operators an a Separable Hilbert's space $\boldsymbol{H}$ 

Joseph S.V. Massamba<br>Département de Mathématique et Informatique, Faculté des Sciences<br>Université Pédagogique Nationale (UPN)<br>Kinshasa, RD. Congo


#### Abstract

This paper aims at solving the problem of knowing whether we can find the vector space $\mathcal{B}(H)$ of bounded operators on a separable Hibert's space $H$ and a scalar product and eventually decide on the completeness of hermitian norm. I did not only succeed to confer the structure of Hilbert's space to the vector space $\mathcal{B}(H)$, but also to establish equality between norm operator and hermitian norm on $\mathcal{B}(H)$.


Keywords: Vector space, scalar product, completeness, separable, Hilbert space, Banach space, norm operator, Hilbert basis

## Useful Matters

### 1.1 Scalar Product

Let $E$ be a vector space and a map denoted $g: E x E \rightarrow \mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$ filling following properties :

$$
\begin{aligned}
& \text { (i) } \forall x, y, z \in E: g(x+y, z)=g(x, z)+g(y, z) \\
& \text { (ii) } \forall x, y, z \in E: g(x, y+z)=g(x, y)+g(x, z) \\
& \text { (iii) } \forall x, y \in E \text { and } r \in \mathbb{K}: g(r x, y)=r(x, y) \\
& \text { (iv) } \forall x, y \in E \text { and } r \in \mathbb{K}: g(x, r y)=\bar{r}(x, y)
\end{aligned}
$$

(v) $\forall x, y \in E: g(x, y)=\overline{g(y, x)}$
(iv) $\forall x, \in E: g(x, x)>0$ if $x \neq 0$ and $g(x, x)=0$ if $x=0$

The so-defined map $g$ is called hermitian form or simply a scalar product on $E$. Note that if $\mathbb{K}=\mathbb{R}$ then $g$ is a bilinear form and, consequently properties $(i i)$ and ( $v$ ) are dropped [1, 2, 3].

### 1.2 Two Notions Generated by the Scalar Product

### 1.2.1. First Notion

The map denoted

$$
\begin{gathered}
\|\|: E \rightarrow \mathbb{R} \\
x \mapsto\|x\|=\sqrt{<x, x>}
\end{gathered}
$$

With properties :
(i) $\forall x \in E,\|x\|>0$ if $x \neq 0$ and $\|x\|=0$ if $x=0$
(ii) $\forall x \in E$ andascalar $\mathrm{r}:\|r x\|=r\|x\|$
(iii) $\forall x, y \in E:\|x+y\| \leq\|x\|+\|y\|$

This mapis called hermitian norm on E

### 1.2.1. Second Notion

Inequality $|(x, y)| \leq\|x\|\|y\| \forall x, y \in E$, is called Cauchy-Schwarz's inequality.

### 1.3 Hilbert's Space

### 1.3.1 Definition

Let E be a vector space provided with a scalar product; it is said that E is a space of Hilbert if the associated hermitian norm is complete; in other words, if any Cauchy's sequence in E is convergent; a space of Hilbert $E$ is known as separable if it possesses a dense and countable part or simply a hilbertian basis.

### 1.3.2 Remark

In this note, H is aseparable complex Hilbert's space with infinite size whose scalar product, norm and hilbertian basisare respectively denoted $(),,\| \|$ and $b=\left(e_{i}\right)_{i \geq 1}$; its null element $0_{H}$ is simply denoted 0 ; the bounded operators, also called continuous operators on H , are appointed by capital letters $\mathrm{A}, \mathrm{B}, \mathrm{C} . . ;$ their set is denoted $\mathcal{B}(H) ; B_{H}=\{x \in H:\|x\| \leq 1\}$ is the closed unit bowlof H ; any vector $x$ of H is represented by $x=\sum_{i=1}^{\infty} u_{i} e_{i}$ and $\sum_{i=1}^{\infty}\left|u_{i}\right|^{2}=\|x\|^{2}$ with $u=\left(x, e_{i}\right)$ (1); for any operator A and $e_{i} \in b$, one will write $A e_{i}$ instead of $A\left(e_{i}\right)$, the field of definition of an operator A on H is dense in H , which means that $\bar{A}=H, \bar{A}$ being the adherence or the closing of A ; thus, for both bounded operators A and B on H and $e_{\hat{\imath}} \in b, A e_{i}$ and $B e_{i}$ are vectors of H such as $\left(A e_{i}, B e_{i}\right) \in \mathbb{K}=$ $(\mathbb{R}$ ou $\mathbb{C})[2]$; the norm operator on H is, in general denoted and defined by $\|A\|_{1}=\sup \{\|A x\|: x \in$ $B H$ or, in particular $A 1=$ supAei: $i \in b$.

### 1.3.3 Proposition

$\forall$ A a bounded operator on H anda vector $x \in B_{H}$, onehas : $\|A x\|^{2} \leq\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|\right)^{2}$

## Proof

Onehas $\|A x\|^{2}=\left\|A\left(\sum_{i=1}^{\infty} u_{i} e_{i}\right)\right\|^{2}$

$$
=\left\|\sum_{i=1}^{\infty} A\left(u_{i}, e_{i}\right)\right\|^{2}=\left\|\sum_{i=1}^{\infty \sqrt{ }} u_{i} A e_{i}\right\|^{2}
$$

$=\left(\sum_{i=1}^{\infty} u_{i} A e_{i}, \sum_{i=1}^{\infty} u_{i} A e_{i}\right)$
[scalar product on H ]

$$
\leq\left|\left(\sum_{i=1}^{\infty} u_{i} A e_{i}, \sum_{i=1}^{\infty} u_{i} A e_{i}\right)\right|
$$

$\leq\left\|\sum_{i=1}^{\infty} u_{i} A e_{i}\right\|\left\|\sum_{i=1}^{\infty} u_{i} A e_{i}\right\|$ [inequality of Cauchy-Schwarz ]
$=\sum_{i=1}^{\infty}\left\|u_{i} A e_{i}\right\| \sum_{i=1}^{\infty}\left\|u_{i} A e_{i}\right\|$ [continuity of the norm]

$$
=\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|u_{i} A e_{i}\right\| \sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|=\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|\right)^{2}
$$

Hence one obtains $\|A x\|^{2} \leq\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|\right)^{2}[1,2,3]$

## SEEkING Efficient Scalar Product

### 1.4 Method

Let H be a separable complex space of Hilbert with infinite size; one resorts to the convergence of sequences in normalized spaces, in fact, spaces of Banach $\mathbb{K}=(\mathbb{R}$ or $\mathbb{C})[1]$ and, also with the exploitation of elements presented above such as if $A$ and $B$ are two bounded operators on $H$ and
$e_{i} \in b$ then the fields of definition of A and B are dense, $\left(A e_{i}, B e_{i}\right) \in \mathbb{C}$ and $\left|A e_{i}, B e_{i}\right| \leq$ $\left\|A e_{i}\right\|\left\|B e_{i}\right\|$ the inequality of Cauchy-Schwarz.

### 1.5 Establishment

Let A and B be two bounded operators on H and $e_{i} \in b$ then; $\left(A e_{i}, B e_{i}\right) \in \mathbb{C}$; one considers the numerical series $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|\left(A e_{i}, B e_{i}\right)\right|$;it is clear that one has successively
$\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|\left(A e_{i}, B e_{i}\right)\right| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|\left\|B e_{i}\right\| \quad$ [inequality of Cauchy-Schwarz ]
$\leq\|A\|_{1}\|B\|_{1}<\infty\left[\right.$ for $\left.\sum_{i=1}^{\infty} \frac{1}{2^{i}}=1\right]$
or simply the inequality $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|\left(A e_{i}, B e_{i}\right)\right|<\infty$ which means that the obtained series $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|\left(A e_{i}, B e_{i}\right)\right|$ converges in $\mathbb{R}^{+} ;$then it results from it that the series $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ converge absolutely in $\mathbb{R}$ and, consequently, it converges in $\mathbb{C}$; that is to say that $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right) \in \mathbb{C}[3]$ such as, for any bounded operator $A$ on $\mathrm{H}, \quad \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, A e_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|^{2} \geq 0$ which means that $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|^{2}>0$ for all $A \neq 0$ and $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|^{2}=0$ when $A=0$; the scalar obtained is denoted $\langle A, B\rangle_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ for any bounded operator A on H ; now it is shown that it is independent of the choice of the used hilbertian basis; indeed, if $d=\left(g_{t}\right)_{t \geq 1}$ another hilbertian basis of H then one obtains successively

$$
\begin{aligned}
\left(A e_{i}, B e_{i}\right)= & \left(A e_{i}, g_{t}\right)\left(g_{t}, B e_{i}\right)=\left(e_{i}, A * g_{t}\right)\left(B * g_{t}, e_{i}\right) \\
& =\left(B * g_{t}, A * g_{t}\right)=\left(A g_{t}, B g_{t}\right)
\end{aligned}
$$

It results from it that one obtains the equality $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A g_{t}, B g_{t}\right)$; however, that is not enough to conclude that $<,\rangle_{2}$ is a scalar product on $H$; it should be shown that $\left.<,\right\rangle_{2}$ enjoys the properties(1.1).

### 1.6 Theorem

The map $<,>_{2}: H \times H \rightarrow$ Cenjoys the properties: (1.1)Indeed, one has respectively
(i) For all three bounded operators A, B, C on $H$ and: $e_{i} \in \varphi$

$$
<A+B, C>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left[\left(A e_{i}, C e_{i}\right)+\left(B e_{i}, C e_{i}\right)\right]=\langle A, C\rangle_{2}+\langle B, C\rangle_{2}
$$

(ii) Whatever two bounded operators A, B on H and: $e_{i} \in \varphi$

$$
<A, B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)=\overline{\sum_{i=1}^{\infty} \frac{1}{\mathrm{e}^{i}}\left(B e_{i}, A e_{i}\right)}=\overline{\left\langle B, A>_{2}\right.}
$$

(iii) For both bounded operators A, B on $\mathrm{H}, \lambda$ a scalar and: $e_{i} \in \varphi$
$<\lambda A, B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(\lambda A e_{i}, B e_{i}\right)=\lambda \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ while

$$
<A, \lambda B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(\lambda A e_{i}, B e_{i}\right)=\bar{\lambda} \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)
$$

(iv) Whatever abounded operator A on H and $e_{i} \in \varphi$ one has on the one hand, $\langle A, A\rangle_{2}=$ $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, A e_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|\mathrm{Ae}_{\mathrm{i}}\right\|^{2} \geq 0$ with $i=1,2,3, \ldots . \quad, \quad e_{i} \in \varphi$ and, on the other hand $<$ $A, A>2=0 \Rightarrow i=1 \infty 12 i \mathrm{Aei} 2=0$ for all $i=1,2,3, \ldots$ and; $e i \in \varphi$ that means that; $A=0$ thus it is concluded-T that
$<>_{2}$ is a scalar product on the vector space $\mathcal{B}(H)$; the proof is finished; now one can affirm that:

## Results

### 1.7 Theorem

Let H be a separable complex space of Hilbert with infinite size whose scalar product is denoted (,), $\varphi=\left(e_{i}\right)_{i \geq 1}$ one of its hilbertian basis and the map defined by

$$
<,>_{2}:(\mathcal{B}(H))^{2} \rightarrow \mathbb{C}:(A, B) \mapsto\left\langle A, B>_{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)\right.
$$

whatever two bounded operators $A, \mathrm{~B}$ on H and $e_{i} \in \varphi$ then $<_{,}>_{2}$ is a scalar product on $\mathcal{B}(H)$; the hermitian norm associated to the scalar product is denoted and defined by $\|A\|_{2}=$ $\left(\sum_{i=1}^{\infty}\left\|A e_{i}\right\|^{2}\right)^{1 / 2}$ for any bounded operator $A$ on H .

### 1.8 Remark

The vector space $\mathcal{B}(H)$ is thus provided with two norms, namely the norm operator \| $\|_{1}$ and the hermitiannorm \| $\|_{2}$;is there exist a bond between these two norms? As norms are real numbers, one resorts to the following technique to answer the asked question.

### 1.9 Comparing \|\| $\|_{1}$ and \| $\|_{2}$

### 3.3.1. Seeking the answer

It is necessary and enough to show $(k)\left\|\left\|_{1} \leq\right\|\right\|_{2}$ and $(p)\left\|\left\|_{2} \leq\right\|\right\|_{1}$ for that, one resorts to the proposal (1.3.3)

$$
(k)\|\quad\|_{1} \leq\| \|_{2}
$$

Whatever a bounded operator A on H and a vector $x \in B_{H}$

$$
\|A x\|^{2} \leq\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|\right)^{2}[\text { proposal }(1.3 .3)]
$$

$$
\leq\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\left\|A e_{i}\right\|_{2}\right)^{2}=\left(\sum_{i=1}^{\infty}\left|u_{i}\right|\|A\|_{2}\left\|e_{i}\right\|\right)^{2}
$$

$\left[\right.$ for $\left.\|A\|_{2}=\sup \left\{\left\|A e_{i}\right\|: i=1,2,3, \ldots\right\}\right]$
$=\sum_{i=1}^{\infty}\left|u_{i}\right|^{2}\|A\|_{2}^{2}=\|A\|_{2}^{2}\left[\right.$ for $\left.\sum_{i=1}^{\infty}\left|u_{i}\right|^{2}=\left\|e_{1}\right\|^{2}=1\right]$
Briefly $\|A x\|^{2} \leq\|A\|_{2}^{2}$ or simply $\|A x\| \leq\|A\|_{2}$; it from of results well that $\|A\|_{1}=\sup \{\|A x\|:\|x\| \leq$ $1 \leq A 2$ or simply $A 1 \leq A 2$.

$$
(p)\|\quad\|_{2} \leq\|\quad\|_{1}
$$

Let $A$ be a bounded operator on H ; then there are the following inequalities:
$\|A\|_{2}^{2}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, A e_{i}\right) \quad$ [the square of the standard $\left\|\|_{2}\right]$

$$
\leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|\left(A e_{i}, A e_{i}\right)\right| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{i}\right\|\left\|A e_{i}\right\|
$$

[inequality of Cauchy-Schwarz ]

$$
=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(\left\|A e_{i}\right\|\right)^{2} \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left\|A e_{1}\right\|_{1}^{2}
$$

$$
\left[\operatorname{for}\|A\|_{1}=\sup \left\{\left\|A e_{i}\right\|: e_{i} \in b\right\}\right]
$$

$$
=\|A\|_{1}^{2}\left\|e_{i}\right\|^{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}}
$$

$=\|A\|_{1}^{2}$

$$
\left[\text { for } \sum_{i=1}^{\infty} \frac{1}{2^{i}}=1=\left\|e_{i}\right\|^{2}\right]
$$

Briefly $\|A\|_{2}^{2} \leq\|A\|_{1}^{2}$ or clearly $\|A\|_{2} \leq\|A\|_{1}$.

### 3.3.2. Obtained result

The obtained results $\|A\|_{1} \leq\|A\|_{2}$ and $\|A\|_{2} \leq\|A\|_{1}$ mean that; $\left\|\left\|_{2}=\right\| \quad\right\|_{1}$ what we nicely express in these terms:

### 3.3.3. Theorem

Let H be a separable complex space of Hilbert with infinite size, $\left(e_{i}\right)_{i \geq 1}$ a hilbertian basis of H and the norms \|\| $\|_{1}$ and \| $\|_{2}$ on the vector space $\mathcal{B}(H)$; then the two norms are equal, in other words one has the equality $\|\quad\|_{1}=\|\quad\|_{2}$.

### 1.10 Conclusion

The two theorems (3.1) and(3.3.3) established clearly that, on the one hand the scalar $\langle A, B\rangle_{\gamma}=$ $\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right)$ is a square form and, on the other hand bothnorms(operator and hermitian) on the vector space $\mathcal{B}(H)$ are equal; as the norm operator \| $\|_{1}$ is complete, it results from it that the hermitiannorm\| $\|_{2}$ is too; that is to say that, provided with the norm\| $\|_{2}$. the vector space $\mathcal{B}(H)$ is a space of Banach ; what leads to the short following conclusion:
$\operatorname{Let} \mathcal{B}(H)$ be the separable complex vector space with infinite size; provided with the scalar product $<,>_{\gamma}=\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(A e_{i}, B e_{i}\right), \mathcal{B}(H)$ is a space of Hilbert.

## Acknowledgements

I am grateful to Donatien Ntantu Ibula, my PhD advisor for helpful discussions on the original manuscript. I deeply thank Francis Mayala and Ruffin-Benoît Ngoie, the former for typing the text of the present paper and the latter for translating the original manuscript from French to English.

## References

[1] Dieudonné J., Eléments d'analyse moderne. Gautier Villars, Paris,1974.
[2] Schwartz U, Analyse hilbertienne, Hermann, Paris, 1979.
[3] Kolmogorov A, Fomine S., Eléménts de la théorie des fonctions et de l'analyse fonctionnelle,French Trad.,Editions Mir, Moscou, 1974

## AUTHOR'S BIOGRAPHY



MasambaSalaVoka, is senior lecturer at UniversitéPédagogiqueNationale, Kinshasa (RDC). He teaches Infinitesimal Analysis, Functional Anlysis and General Topology. He is also a PhD. Student at the same University.

