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Abstract: With the question of knowing if it is possible to study sequences in a nonseparable space or not 

provided with a scalar product, we propose a possible technique for an unspecified Banach’s space G, with or 

without unit element, separable or not. 
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1. INTRODUCTION 

1.1 Useful Vector Spaces of Sequences in G 

Let G be an arbitrary space of Banach,  𝐺𝑛  the vector space of sequences in G, i.e. 𝐺𝑛 =

 𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑖  , …  such that 𝑥𝑖 ∈ 𝐺 for 𝑖 = 1,2,3, … ,𝐺𝐶
𝑛 =  𝑥 ∈ 𝐺𝑛 : ∃𝑥𝛼 ∈  and lim𝑖→∞ 𝑥𝑖 −

𝑥𝛼=0the vectorial subspace of convergent sequences in G and, finally, the vectorial subspace of   

𝐺𝐶
𝑛denoted   𝐺2and defined as and by the following conditions:  

𝐺2 =  𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑖 , … : 𝑥 ∈ 𝐺𝐶
𝑛𝑒𝑡  𝑥𝑖 

2∞
𝑖=1 < ∞  ; it allows two vectorial subspaces   denoted 

𝐺𝑝
𝑛𝑒𝑡𝐺𝑃. 

1.2  Hilbert’s spaces sequence 

Now, Let  𝐻𝑖 𝒊≥𝟏 be a sequence of unspecified spaces of Hilbert and H a set of sequences defined as 

follows:    𝐻 =  ℎ =   ℎ1 , ℎ2 , … , ℎ𝑖 , … : ℎ𝑖 ∈ 𝐻𝑖   for 𝑖 = 1,2,3, … and    ℎ𝑖 
2∞

𝑖=1 < ∞  ; it is known 

that H is a vector space such as, provided with the square form denoted and defined by 𝛼 ∶  𝐻2  ⟶

ℝ ∶  𝛼 ℎ, 𝑔 =    ℎ𝑖 ↑ 𝑔𝑖 
∞
𝑖=1 for all ℎ, 𝑔 ∈ 𝐻, it is a Hilbert’s space called hilbertian sum of the 

sequence   𝐻𝑖 𝑖≥1[ 1 ].  

1.3 Towards the answer 

Let us return to vector spaces  𝐺2 and H, and consider the following maps: on the one hand    𝛾 ∶

 𝐺2 ⟶ 𝐻: 𝑥 ⟶ 𝛾 𝑥 = ℎ ∈ 𝐻for all  𝑥 ∈ 𝐺2and on the other hand   𝜔 ∶   𝐺2 2  ⟶ 𝐻2:  𝑥, 𝑦 ⟶

 𝜔 𝑥, 𝑦 =   𝑔, ℎ for all  𝑥, 𝑦 ∈ 𝐺2and  ℎ, 𝑔 ∈ 𝐻 ; it is clear that 𝛾 and 𝜔 are linear one-to-one maps, 

therefore isomorphisms 𝑖 ; now, Let  𝐺2 2: 𝜑 ⟶⟶⟶ ℝ be a map ; it is easy and favorable to note 

that starting from three applications 𝜔, 𝛼𝑒𝑡𝜑, one immediately obtains the diagram presented in 

section 2. 
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2. ANSWER 

2.1 Observing and exploiting the diagram 

 

Figure 1. Commutative diagram 

It is clear that  𝜑 = 𝛼𝑜𝜔 such that, for all 𝑥, 𝑦 ∈  𝐺2, one obtains following equalities :   

𝜑 𝑥, 𝑦  =  𝛼𝑜𝜔  𝑥, 𝑦 =  𝛼 𝜔  𝑥, 𝑦   =𝛼 𝑔, ℎ =   𝑔𝑖 ↑ ℎ𝑖 
∞
𝑖=1  

or simply    𝜑 𝑥, 𝑦 =   𝑔𝑖 ↑ ℎ𝑖 
∞
𝑖=1  

2.2 Result 

As H and  𝐺2are isomorphic vector spaces  𝑖 and H is a Hilbert’s space whose scalar product is   

𝛼 ℎ, 𝑔 =    ℎ𝑖 ↑ 𝑔𝑖 
∞
𝑖=1 for all   ℎ, 𝑔 ∈ 𝐻, it is easy to conclude that   𝐺2is a space of Hilbert whose 

scalar product is   𝜑 𝑥, 𝑦 =   𝑥𝑖 ↑ 𝑦𝑖 
∞
𝑖=1 for all  𝑥, 𝑦 ∈ 𝐺2; thus, one can easily establish the 

quadruple  𝐺𝑛 , 𝐺𝑝
𝑛  , 𝐺2 , 𝐺𝑝similar to the traditional quadruple  𝕂𝑛 , 𝕂𝑝

𝑛  , ℓ2 , ℓ𝑝attributed to Riesz. 

2.3 An illustration 

In particular, Let ℬ 𝐻   be a Banach’s space;   by representing a sequence in  ℬ 𝐻 by  𝐴 =
 𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑖 , . .   such that  𝐴𝑖 ∈ ℬ 𝐻  for all  𝑖 = 1,2,3, …and one can consider the vector space 

of the convergent sequences in  ℬ 𝐻 ,  denoted and defined as follows:   

ℬ2 =  𝐴 =  𝐴1 , 𝐴2 , 𝐴3 , … , 𝐴𝑖 , . .   such that   𝐴𝑖 
2∞

𝑖=1 < ∞     ; it is provided with two vectorial 

subspaces  denoted ℬ𝑝
𝑛  and ℬ𝑝 ; it is easy to note that the vector space   ℬ2is isomorphic to the vector 

space  𝐺2which is a Hilbert’s space whose scalar product is denoted  𝜑 𝑥, 𝑦 =   𝑥𝑖 ↑ 𝑦 ∞
𝑖=1 ; it 

results from it that  ℬ2is a space of Hilbert whose scalar product is written as 𝛿 𝐴, 𝐷 =   𝐴𝑖 ↑∞
𝑖=1

𝐷𝑖for all  𝐴,𝐷∈ ℬ𝐻; thus, one can easily establish the quadruple  ℬ𝑛,ℬ𝑝𝑛 ,ℬ2, ℬ𝑝similar to the 

traditional quadruple    𝕂𝑛 , 𝕂𝑝
𝑛  , ℓ2 , ℓ𝑝attributed to Riesz.   
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