On Spectral Theory of Sequences Vector Spaces in a Space without Scalar Product: Case of a Banach's Space G

S.V. Massamba
Département de MathématiqueetInformatique, Faculté des Sciences
Université Pédagogique Nationale (UPN)
Kinshasa, RD. Congo

Abstract

With the question of knowing if it is possible to study sequences in a nonseparable space or not provided with a scalar product, we propose a possible technique for an unspecified Banach's space G, with or without unit element, separable or not.

Keywords: Sequence, Convergent sequence, Vector space, Banach's space, Hilbert's space, Isomorphism.

1. Introduction

1.1 Useful Vector Spaces of Sequences in G

Let G be an arbitrary space of Banach, G^{n} the vector space of sequences in G, i.e. $G^{n}=$ $\left\langle x=\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots\right)\right.$ such that $x_{i} \in G$ for $\left.i=1,2,3, \ldots\right\rangle, G_{C}^{n}=\left\{x \in G^{n}: \exists x_{\alpha} \in\right.$ and $\lim _{i \rightarrow \infty} \| x_{i}-$ $x a=0$ the vectorial subspace of convergent sequences in G and, finally, the vectorial subspace of G_{C}^{n} denoted G^{2} and defined as and by the following conditions:
$G^{2}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots\right): x \in G_{C}^{n}\right.$ et $\left.\sum_{i=1}^{\infty}\left\|x_{i}\right\|^{2}<\infty\right\} ;$ it allows two vectorial subspaces denoted $G_{p}^{n} e t G^{P}$.

1.2 Hilbert's spaces sequence

Now, Let $\left(H_{i}\right)_{i \geq 1}$ be a sequence of unspecified spaces of Hilbert and H a set of sequences defined as follows: $H=\left\{h=\left(h_{1}, h_{2}, \ldots, h_{i}, \ldots\right)\right.$: $h_{i} \in H_{i}$ for $i=1,2,3, \ldots$ and $\left.\sum_{i=1}^{\infty}\left\|h_{i}\right\|^{2}<\infty\right\}$; it is known that H is a vector space such as, provided with the square form denoted and defined by $\alpha: H^{2} \rightarrow$ $\mathbb{R}: \alpha(h, g)=\sum_{i=1}^{\infty}\left(h_{i} \uparrow g_{i}\right)$ for all $h, g \in H$, it is a Hilbert's space called hilbertian sum of the sequence $\left(H_{i}\right)_{i \geq 1}[1]$.

1.3 Towards the answer

Let us return to vector spaces G^{2} and H , and consider the following maps: on the one hand γ : $G^{2} \rightarrow H: x \rightarrow \gamma(x)=h \in$ Hfor all $x \in G^{2}$ and on the other hand $\omega:\left(G^{2}\right)^{2} \rightarrow H^{2}:(x, y) \rightarrow$ $\omega(x, y)=(g, h)$ for all $x, y \in G^{2}$ and $h, g \in H$; it is clear that γ and ω are linear one-to-one maps, therefore isomorphisms (i); now, Let $\left(G^{2}\right)^{2}: \varphi \longrightarrow \longrightarrow \longrightarrow \mathbb{R}$ be a map ; it is easy and favorable to note that starting from three applications $\omega, \alpha e t \varphi$, one immediately obtains the diagram presented in section 2.

2. ANSWER

2.1 Observing and exploiting the diagram

Figure 1. Commutative diagram
It is clear that $\varphi=\alpha o \omega$ such that, for all $x, y \in G^{2}$, one obtains following equalities :
$\varphi(x, y)=(\alpha o \omega)(x, y)=\alpha\{\omega((x, y))\}=\alpha(g, h)=\sum_{i=1}^{\infty}\left(g_{i} \uparrow h_{i}\right)$
or simply $\varphi(x, y)=\sum_{i=1}^{\infty}\left(g_{i} \uparrow h_{i}\right)$

2.2 Result

As H and G^{2} are isomorphic vector spaces (i)and H is a Hilbert's space whose scalar product is $\alpha(h, g)=\sum_{i=1}^{\infty}\left(h_{i} \uparrow g_{i}\right)$ for all $h, g \in H$, it is easy to conclude that G^{2} is a space of Hilbert whose scalar product is $\varphi(x, y)=\sum_{i=1}^{\infty}\left(x_{i} \uparrow y_{i}\right)$ for all $x, y \in G^{2}$; thus, one can easily establish the quadruple $G^{n}, G_{p}^{n}, G^{2}, G^{p}$ similar to the traditional quadruple $\mathbb{K}^{n}, \mathbb{K}_{p}^{n}, \ell^{2}, \ell_{p}$ attributed to Riesz.

2.3 An illustration

In particular, Let $\mathcal{B}(H)$ be a Banach's space; by representing a sequence in $\mathcal{B}(H)$ by $A=$ $\left(A_{1}, A_{2}, A_{3}, \ldots, A_{i}, \ldots\right)$ such that $A_{i} \in \mathcal{B}(H)$ for all $i=1,2,3, \ldots$ and one can consider the vector space of the convergent sequences in $\mathcal{B}(H)$, denoted and defined as follows:
$\mathcal{B}^{2}=\left\{A=\left(A_{1}, A_{2}, A_{3}, \ldots, A_{i}, ..\right)\right.$ such that $\left.\sum_{i=1}^{\infty}\left\|A_{i}\right\|^{2}<\infty\right\} ;$ it is provided with two vectorial subspaces denoted \mathcal{B}_{p}^{n} and \mathcal{B}^{p}; it is easy to note that the vector space \mathcal{B}^{2} is isomorphic to the vector space G^{2} which is a Hilbert's space whose scalar product is denoted $\varphi(x, y)=\sum_{i=1}^{\infty}\left(x_{i} \uparrow y\right)$; it results from it that \mathcal{B}^{2} is a space of Hilbert whose scalar product is written as $\delta(A, D)=\sum_{i=1}^{\infty}\left(A_{i} \uparrow\right.$ D ffor all $A, D \in \mathcal{B} H$; thus, one can easily establish the quadruple $\mathcal{B} n, \mathcal{B} p n, \mathcal{B} 2, \mathcal{B} p$ similar to the traditional quadruple $\mathbb{K}^{n}, \mathbb{K}_{p}^{n}, \ell^{2}, \ell_{p}$ attributed to Riesz.

3. ACKNOWLEDGEMENTS

The author is grateful to Francis Mayala for typing the textof the present paper and to RuffinBenoîtNgoie for translating the original manuscript from French to English.

REFERENCES

[1] Dieudonné J., Eléments d'analyse moderne. Gautier Villars, Paris, 1974.

AUTHOR's BIOGRAPHY

MasambaSalaVoka, is senior lecturer at UniversitéPédagogiqueNationale, Kinshasa (RDC). He teaches Infinitesimal Analysis, Functional Anlysis and General Topology. He is also a PhD. Student at the same University.

