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Abstract: Let )(zp be a polynomial of degree n , 



n

zazp
0

)(



  and also let 

jjjj aa   )Im(,)Re( . In this paper we have obtained a zero-free region in terms of j and j , and 

also obtained the number of zeros that can lie in a prescribed region. Our result sharpens as well as generalizes 

the earlier known results.  
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1-Introduction and Statement of Results 

The following results are well known in the theory of the distribution of zeros of polynomial. 

Theorem A: - If 



n

zazp
0

)(



 be a polynomial of degree n  with the coefficients satisfying 

the condition   

                                    00121   aaaaa nnn   , 

then all zeros of )(zp lie in 1z . 

This is known as Enestr o m-Kakeya theorem [2, 4]. 

Theorem B: - If 
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                     00121    nnn ,               with 0n ,  

then )(zp has all its zeros in the ring-shaped region given by 
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         The above result is due to Govil and Rahman [3]. 

Theorem C: - If 



n

zazp
0

)(



 be a polynomial of degree n  with complex coefficients. Let 

kkkk aa   )Im(,)Re( and a positive number t  can be found such that 
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then all the zeros of )(zp lie in the disk  
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The above result is due to Aziz and Mohammad [1]. 

The above result does not give zero-free region inside disk and is based upon the assumption 

that all sa j '  and sj ' are positive numbers. We have improved and generalized this result by 

obtaining a zero-free region inside the disk and also maximum number of zeros in prescribed region. 

We have also assumed that sa j '  and sj '  may take any negative or positive values. More precisely 

we prove 

Theorem: -Let 



n
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
  be a polynomial of degree n . If jjj ia    and for some real 

number 0t , 
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where 0 and 0 are not simultaneously zero. 

Then no zeros lie in z
M
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 and number of zeros lying in tz
M
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Corollary: - If in this theorem we take 0j and 0j , then all the zeros of )(zp as per 

the conditions of theorem C lie in  
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This result is an improvement of Theorem C. 

2-Proof of Theorem 

Proof of the theorem: - Let )()()( zpztzF   
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Further 0)0( 0  atF . 

Now it is known that [5, p-171] if )(zG is regular, 0)0( G and MzG )( for Rz  , then the 

number of zeros of )(zG in Rz  , (0< <1) does not exceed 
)0(
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/1log

1

G

M


.Applying this 

fact to )(zF , we get the maximum number of zeros of )(zF and hence )(zp that can lie in tz  as 
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This proves the first part of the theorem. 

Now to show no zeros lie in
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z  , we proceed as follows: 
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By Schwarz’s lemma 
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Therefore )()( 0 zhatzF    implies that 
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This implies that )(zF and hence )(zp does not vanish if  

                                        

1

0

2

M

at
z  . 

This proves the desired result. 
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