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n
Abstract: Letp(z)be a polynomial of degreen, p(Z)=ZaVZV and also et
v=0

Re(a;) =«a;,Im(a;) = B;. In this paper we have obtained a zero-free region in terms of & and /;, and

also obtained the number of zeros that can lie in a prescribed region. Our result sharpens as well as generalizes
the earlier known results.
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1-Introduction and Statement of Results

The following results are well known in the theory of the distribution of zeros of polynomial.

Theorem A: - If p(z) = Zavzv be a polynomial of degree n with the coefficients satisfying
v=0

the condition

then all zeros of p(z) liein|z|<1.

This is known as Enestr 0 m-Kakeya theorem [2, 4].

Theorem B: - If p(z) =Y a,z" be a polynomial of degreen . If a; = a; +i/3; and
v=0
Re(a,) =, ,Im(a,) = g, for k=0,1,2,...... ,n and
LA 2o, 20,20, withe, >0,
then p(z) has all its zeros in the ring-shaped region given by
|a| 11,5
— s|z|sR1:1+—{ZZ|ﬂk|+|ﬁn|}
Rl 1[2R1an + R1|ﬂn|_ (ao +|ﬂo|)] a, k=0

The above result is due to Govil and Rahman [3].

n
Theorem C: - If p(z) = Zavzv be a polynomial of degree n with complex coefficients. Let
v=0

Re(a,) = «, ,Im(a,) = f, and a positive number t can be found such that
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0<a, <ta, <t?a, < <tha, 2t = >t"a, >0, 0<k<n

0< B, <tB <t?B, <evvee <SR tB Lz >t"B >0, 0<s<n,

t“a, +t°
then all the zeros of p(z) lie in the disk | z | < | t |{2[ a"tn P j—(an +ﬂn)}
an
The above result is due to Aziz and Mohammad [1].

The above result does not give zero-free region inside disk and is based upon the assumption
that all a;'s and /;'s are positive numbers. We have improved and generalized this result by

obtaining a zero-free region inside the disk and also maximum number of zeros in prescribed region.
We have also assumed that a;'s and S;'s may take any negative or positive values. More precisely

we prove

n
Theorem: -Let p(z) = Zavzv be a polynomial of degreen . If a; = a; +if; and for some real
v=0

numbert >0,
a, <tay <tPa, <--eee <t“'g <ta, - >t"a
ﬂo < tﬂl < tzﬂz Seeeees < t57lﬁs—l Stsﬂs A 2 tnﬁn )

where ayand f,are not simultaneously zero.

_tYay| ]y
Then no zeros lie in —— >| z| and number of zeros lying in—— <|z|< &t (0<5 <1) does not
1 1
exceed
0 tn{| an|_(an +ﬂn) }+{| a0|_(0[0 +ﬂ0) }+2(tkak +tsﬂs)
logl/s | a| '
where

M, =t"{(| @, @) + (B, - B,) J+ 2t (e +1°8,) ~t(ay + ).
Corollary: - If in this theorem we take a; > 0and B; > 0, then all the zeros of p(z) as per
the conditions of theorem C lie in
t ay|
Z(tkak +tsﬂs)_(ao +ﬂo)

This result is an improvement of Theorem C.

|z|>

2-Proof of Theorem
Proof of the theorem: - Let F(z) = (t — z) p(2)

=(t-2)(a, +az+a,z> +------ +a z")
n .
F(z)=ta, + Y (ta; —a;,)z' —a,z""
j=1

For [z <t
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n .
|F(z)|£t|a0|+t””|an|+Z;‘taj —aH‘tJ
=

a+ Y ta, —a | +|ta, - B It

j=1

k . n . S .
< tag]+ |+ [ ta; —a [t + 3 ftay —ap [+ 3|8 - B[t
j=1 j=k+1 j=1

<t|a,|+t™

+ Zn:\tﬂj —ﬂj,l\t"
j=s+1

<t|a,|+t" a,|+ 2, 1" —ta, —t"a, + 2 Bt° —tB, —t"B,

<O = (@ + 8) ] 2| = (0 + )+ 2t (e + 1)
=M (Let)

Further F(0)=ta, =0.
Now it is known that [5, p-171] if G (z)is regular, G(0) = Oand |G(z)| < M for|z| <R, then the

number of zeros of G (z)in|z| <SR, (0<5 <1) does not exceed

L log M Applying this
logi/s ]G] TP

fact to F(z) , we get the maximum number of zeros of F(z) and hence p(z) that can lie in |z| <otas

1 I tn{|an|_(an+ﬂn)}+{|ao|_(ao +,30)}+2(tkak +tsﬂs)
og
logl/o EN

This proves the first part of the theorem.
2
|a|

o t
Now to show no zeros lie |n| yA | < , we proceed as follows:

F(z)=(t-2)p(2)
=(t-2)(a, +az+a,z’ +------ +a z")

This implies that
n .
F(z) =ta, —a,z"" + > (ta; —a;,)z’
i-1

or
F(z)=ta,+h(z),

where
n .
h(z)=-a,z"™ + > (ta; —a;,)z’ .
i-1

Now for |Z| =t
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Max| h(z)| <|a,[t"" +Zn:‘taj —aj_l‘tj
-1

|z|=t
n R
< (|0‘n|+|ﬂn|)tn+1 +Z;{‘taj _“1—1‘+‘tﬁj _ﬂj—l‘ }tj
j=

n i n i
< (|an|+|ﬂn|)tn+l +Z ‘taj _aj—l‘ t! +z ‘tﬂj _ﬂj—l‘ t’

j=1 j=1
<(|a,|+]8,] ) 1" + 20, t —ta, —t"a, +2 4t 1B, "B
<t™{(|a, |- a,) + (|8, - B,) |+ 2t (ta +°B,) —t (e + f5,)

n

=M, (Let)
By Schwarz’s lemma
2]
|h(z)|sM1T For [z|<t.
Therefore F(z) =ta, +h(z) implies that
|F(2)|=t]a,|—|h(2)]
>t|a,|-M m
= 0 1 t
>0
if
2
2] <2
1
This implies that F(z) and hence p(z) does not vanish if
2
| z| <ﬂ.
Ml
This proves the desired result.
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