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Abstract: In [1], a mathematical model is proposed. It is an ODE model of Blood Partial Pressures in Human 

Cardiovascular-Respiratory System. This model consists of two components: systemic arterial compartment and 

systemic venous compartment. This model has been important in the field of mathematical modeling of 

Cardiovascular-Respiratory System. We introduce a time delays to the model to describe the time between 

controls (Heart rate and alveolar ventilation) of cardiovascular-respiratory and the pressures (systemic arterial 

and systemic venous pressures) during physical activity. The numerical simulation has been done to test the 

response of controls (Heart rate and alveolar ventilation) of cardiovascular-respiratory system to variation of 

trajectories of pressures.  

Keywords: Systemic arterial pressure, Systemic venous, Heart rate, Alveolar ventilation, delay, numerical 

simulation.

 

1. INTRODUCTION 

The cardiovascular system plays a crucial role in transport of oxygen, carbon dioxide [2] and nutrients 

through the blood from the various muscles and organs. The gases (oxygen and carbon dioxide) 

between the environment and the tissues of human body are transported by the respiratory system 

through the blood flow [3], [4]. A very important discussion for human health is the control of the 

cardiovascular and respiratory system. The improvement of diagnostics and treatment of diseases for 

this system are based on a good knowledge of its control mechanism where the autonomic nervous 

system controls and regulates all activities. In terms of control function in cardiovascular system; the 

autonomic nervous system controls and regulates all activities. The heart rate is controlled by both 

systems (sympathetic and parasympathetic nervous systems) [5] [6]. If the sympathetic nervous 

system excites a particular organ, often parasympathetic nervous system inhibits it [7]. 

The mathematical models exist for different domain of medicine including epidemiology, 

immunology, physiology, cell mobility. Many of these mathematical models focus on the applications 

in controlling the human body. Since the 1950’s, the mathematical models for this system have been 

developed using dynamical mathematical models. Most of them arise from the compartmental theory 

[1], [5], [8], [9], [10], [11], [12], and [13]. The mathematical models incorporating the transport 

delays have been proposed [15]. It was noticed that the heart-lung interaction is inherently unstable, 

especially if certain heart-lung disease or injuries are present. For realistic contribution, the proposed 

models can be employed for controller synthesis for medical equipments. In some mathematical 

model, delay is introduced into the control respiratory system due to the physical distance which gases 

(oxygen and carbon dioxide) levels must be transported to the sensory sites before the ventilatory 

response can be adjusted. The delay in transfer of partial pressure information from lung to 

chemosensors depends on cardiac output in general and blood flow rate to the brain in particular. Thus 

it is important to know how cardiac output and blood flow rates to various tissue centers are 

controlled. The most of these mathematical models consist of a nonlinear system of delay differential 

equations with multiple delays [15]. 

The mathematical model for cardiovascular-respiratory system can be used also for determining the 

variation of trajectories of some determinant parameters of this system. The behavior of these 
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parameters is provided by a qualitative study. The model we are studying was proposed in [1] where 

two delays are introduced. They consist of delays due of response of pressures to controls of 

cardiovascular-respiratory system during three cases of physical activity: Walking, Jogging, and 

Running fast. 

This paper is organised as follows. In section 1, we set mathematical model of differentials equations 

as well as steady state. The section 2 deals with the mathematical model governed by delay 

differential equations. In two previous sections, the numerical simulations have been done and the test 

results presented. In section 3 we present general discussions from the numerical results. The 

concluding remarks are presented in section 4. 

2. THE ODE MODEL 

The cardiovascular and respiratory system plays a crucial role in controlling the blood flow of human 

body. The main controls of pressures are heart rate and alveolar ventilation which control the systemic 

arterial pressures to prevent cardiac accidents [13]. For a healthy subject, it is well known that heart 

rate and alveolar ventilation depend on his/her level in training during physical activity. A 

mathematical model developed by S. Timischl-Teschl [5] shows the instability of equilibrium steady. 

It is governed by many differential equations and it doesn't permit to understand a long-term 

cardiovascular- respiratory system in the case of aerobic physical activities. A two compartmental 

mathematical model has been developed in [1] to solve this problem. We consider the functions  vsP   

and  asP   as respectively mean blood pressures in systemic arterial region and in systemic venous 

region. H  and AV   denote the control functions. For a cardiovascular- respiratory system, they design 

heart rate and alveolar ventilation respectively. The mechanism of this control is not direct and can be 

represented by outflow functions between systemic arterial and venous compartments that depend on 

heart rate alveolar ventilation. The model equations arise from straightforward development of mass 

balance between arterial systemic arterial and systemic venous compartments. For three physical 

activities (Walking, Jogging and Running fast), the ODE mathematical model is  
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where the constants of the model equations (1) are given as  ,0112.0    1724.0   and the 

functions f  and g have been identified as follows [1]. 

 Walking case: 

 ),( AVHf     )4921.36812.2exp( 0943.00479.0   HVA
  , 

 )0981.0exp(),( 7207.30  HVVHg AA
  

 Jogging case: 

 ),( AVHf     )1522.19990.0exp( 2280.01179.0 HH   , 

 )0981.0exp(),( 2105.0  HVVHg AA
  

 Running fast: 

 ),( AVHf     exp )7518.05472.0( 2846.03820.0 HVA   , 

 exp),( AA VVHg   )7440.1( 0985.0 H  

Taking 

),()(),()( tPtytPtx vsas   

),,()(),,()( AA VHgtvVHftu    
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then the model (1) becomes  

.

)()()(
)(

)()()(
)(













tvtxty
dt

tdy

tutytx
dt

tdx





                                                                                                      (2) 

If  
TyxX ),(     is an equilibrium point of variable state  

Tyx ),(   and  
T

eee vuU ),(   is the 

equilibrium of corresponding to the control parameter  U  
Tvu ),(  , the steady state values are 

obtained by solving the following system 
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Therefore, the state values are  
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According to the analysis presented in [1] the steady state  
X   is stable if when  

.10                                                                                                                                               (4) 

Indeed, to discuss this stability, we consider the linearized system of (2) at  
X   where the Jacobian 

matrix is given by 
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Then the characteristic equation of the linearized system is 

0122                                                                                                                              (5) 

and this equation has two strictly negative real roots if and only if  10    . 

In numerical simulation, we consider the steady values given in [1] as shown in the table 1.  

Table 1: The rest and steady values of a 30 years old woman during three cases of physical activities for heart 

rate, alveolar ventilation, venous and arterial systemic pressure. 

Exercise intensity Rest Walking Jogging 

Arterial Pas(mmHg) 104 110 135 

Venous Pvs(mmHg) 3.566 3.46 3.28 

Numerical simulations given in the figures 1, 2 and 3 show that trajectories of system (1) approach to 

the steady state. 
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Figure 1: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for ODE mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

walking physical activity. The simulations are related to the values given in the table 1. 

 

Figure 2: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for ODE mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

jogging physical activity. The simulations are related to the values given in the table 1.  
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Figure 3: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for ODE mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

running physical activity. The simulations are related to the values given in the table 1. 

3. THE DELAY MODEL 

In this section, we introduce two time delays into system (1) to represent the control phase. The model 

is given as follows: 
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where  asvs  ,   are respectively systemic arterial and systemic venous delays and where the initial 

values are taken as follows 

  .for   0,    ),0()(   ),0()( vsasvsvsasas PPPP    

 

To study the stability of the steady states  X
,  let us define 
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the system (6) is written as follows   
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Taking the first order Taylor series around the equilibrium point, we get  
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After calculations, the linearized system becomes  
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which can be written in the following form 
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The solution of the system (7) can be written as 
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from where the derivative gives the following equation  
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Taking into account the equations (8) and (9) the system (7) becomes  
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thus due to this condition  )(tK   is the solution: 
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We know that the stability of this solution depend on the property of the parameter .  Therefore, the 

stability of the solution of equation (7) is obtained using homogeneous equation from the equation of 

the form  
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From the equation (10) we deduce the characteristic equation of the form:  
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After the calculations we get 
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Finally we obtain the characteristic polynomial of the form 
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In [16] is shown that  
X   is asymptotically stable if all roots of the corresponding characteristic 
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equation (13) have negative real parts. However, the comparison with the polynomial characteristic 

equation (5) for the ODE model allows to say that there is much more difficult to deal with the 

equation (13) because it is a transcendental equation with infinitely many eigenvalues and the 

classical Routh-Hurwitz criterion cannot be used to discuss equation (13) anymore. Third justification 

of difficult to deal with the equation (13) is the existence of some general tests (see [17], for example) 

that can be used to determine when all eigenvalues of the transcendental equations have negative real 

parts but to apply such a general test to this specific transcendental equations is very complicated and 

far from trivial [18]. 

Using the analytical study, we analyse the distribution of the roots of the transcendental equation (13). 

Recall that if the relation (4) is satisfied for the parameters     and     for the ODE model (1), the 

steady state  
X   is stable. This is our starting point so that we shall derive conditions on the 

parameters to ensure that the steady state of the delay model is still stable. 

To proceed, we consider equation (13) with  0 vsas  , that is equation (5). Assuming that all 

the roots of equation (5) have negative real parts. This is equivalent to the assumption (13). From 

Rouché's Theorem [19] and the continuity in  vsas    , the transcendental equation (13) has 

roots with positive real parts if and only if it has purely imaginary roots. We shall determine if (13) 

has purely imaginary roots, from which we then shall be able to find conditions for all eigenvalues to 

have negative real parts. 

Let us take the eigenvalue of the characteristic equation (13)  )()(     where  )(   and  

)(   depend on the delay  .   Since the equilibrium  X


  is stable for the ODE model (1), we 

deduce that that  0)0(    when  0  . Taking  0   but sufficiently small the property of 

continuity allows to say that  0)0(    and  
X   is stable. Assuming that  0)( 0    for certain 

value  0 0   such that we have  )( 0 i   is a purely imaginary root of (13), then the steady 

state  
X   loses its stability and eventually becomes unstable when  )(   becomes positive. In other 

words, when  )(   does not exist, that is, when the characteristic equation (13) does not have purely 

imaginary roots for all delay, the steady state  
X   is always stable. We shall show that this indeed is 

true for the characteristic equation (13). We prove the following result. 

 Proposition 3.1    

If the relation (4) is satisfied for the parameters     and  ,   then the steady state  
X   of the delay 

model (6) is absolutely stable; that is,  
X   is asymptotically stable for all  .0   

 Proof    

 i   is a root of equation (13) if and only if 

0122    iei  

that is 

  .0)sin()cos(122   ii  

Separating the real and imaginary parts, we obtain 

0)cos(12                                                                                                                    (14) 

and 

.0)sin(2                                                                                                                            (15) 

Thus we have 

21)cos(                                                                                                                             (16) 
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and 

.2)sin(                                                                                                                                (17) 

Adding up the squares of both two last equations, we obtain 

      .21
2222

   

After calculation, we have 

.1 2                                                                                                                                          (18) 

Since the relation (4) is satisfied, we then have 

.110 2    

Taking the right inequality, we obtain 

02   

which does not have mathematically the meaning. This implies that there is no   such that  i  is an 

eigenvalue of the characteristic equation (13). Therefore, the real parts of all the eigenvalues of (13) 

are negative for all delay  0   and  
X   is asymptotically stable 

In numerical simulation, we consider again constants given in the table 1. The values of delays  as   

and  vs   are given in the table 2.  

Table 2: Delay parameters in the walking, jogging and running cases. 

Delay parameters Walking Jogging Running 

τas 0.6689 0.6698 0.6989 

τvs 0.6889 0.6994 0.6999 

The figures 4, 5 and 6 are results obtained from the numerical simulations of the system (6). They 

show that the steady state
X is asymptotically stable. Compared with the 1, 2 and 3, we can see that 

though the delay causes transient oscillations in the components, the steady state 
X is still stable.  

 
Figure 4: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for delay mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

walking physical activity. The simulations are related to the values given in the table 1 and the values of delay 

are presented in the table 2.  
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Figure 5: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for delay mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

jogging physical activity. The simulations are related to the values given in the table 1 and the values of delay 

are presented in the table 2. 

 

Figure 6: Variation trajectory of systemic arterial (a) and systemic venous (b) pressures for delay mathematical 

model. They are compared to their respective steady value (dashed line) for a 30 years old woman during 

running physical activity. The simulations are related to the values given in the table 1 and the values of delay 

are presented in the table 2. 

Remark 3.2  

According to the Proposition 3.1, the steady state of the delay model () is asymptotically stable for all 

delay values. This means that the stability is independent of the delay. However, we should point out 

that if the conditions of the Proposition 3.1 are not satisfied, then the stability of the steady state 

depends on the delay value and the delay could even induce oscillations. 

Let us be interested in one example to clarify the idea of Remark 3.2. If we take  1   then from 

equation (18) has a positive root 0 . This implies that the characteristic equation (13) has a pair of 

purely imaginary roots  .0i   
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Let  )()()(  i   be the eigenvalue of equation () such that  0)( 0    and  00 )(    . 

From (16) and (17) we have 
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It is also easy to verify the the following transversality condition: 
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The continuity allows us to say that real part of  )(   becomes positive when  0    and the steady 

state  
X   becomes unstable. Moreover, the behavior of  

X   is discussed in [20] from where a we 

conclude that Hopf bifurcation occurs when    passes through the critical value  0  . 

The above analysis can be summarized into the following proposition. 

Proposition 3.3   

Suppose that  1   is satisfied, then the infected steady state  
X   of the delay model () is 

asymptotically stable when  0    and unstable when  0   , where 

.
1

2
arctan

1
2

0

0

0
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  

When  0   , a Hopf bifurcation occurs; that is, a family of periodic solutions bifurcates from  
X   

as s passes through the critical value  0  . 

4. DISCUSSION 

The mathematical model for cardiovascular-respiratory system incorporating a time delay has been 

used (See par example [21]). Now the challenge is to determine how the delay of cardiovascular-

respiratory affects overall determinant parameters and, mathematically, how the delay effects the 

dynamics of systems. 

We have used the mathematical model proposed in [1]. It is governed by a system of two differential 

equations. Using stability analysis we obtained sufficient conditions on the parameters for the 

stability. For parameter where the condition (4) is satisfied allows the stability of steady state and 

numerical simulations confirmed the analysis. The variation of determinant parameters of 

cardiovascular respiratory system are due to the variation of its controls (Heart rate and alveolar 

ventilation). Consequently, these parameters reach the steady value and stay around is due the 

increase of controls to their equilibrium values. 

We then introduced two time delays into the model which describes the time between controls and the 

reaction of pressures of cardiovascular-respiratory system. By analyzing the transcendental 

characteristic equation, we analytically derived stability conditions for the steady state in terms of the 

parameters and independent of the delay. Using the parameter values in tables 1 and 2, we found that 

all the conditions are satisfied. Thus, the steady state is stable, independent of the size of the delay, 

though the time delay does cause transient oscillations in all components. Numerical simulations 

confirmed our analysis. Biologically, it implies that the delay in cardiovascular-respiratory system can 

cause the controls and pressures to fluctuate at the beginning of physical activity and in a longer term 

determinant of cardiovascular-respiratory system converge to the their equilibrium values due to 

controls. Under another set of assumptions on the parameters, the stability of the steady state depends 

on the delay and even delay-induced oscillations could occur via instability. 
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5. CONCLUDING REMARKS  

We have investigated in this work a bi-compartmental mathematical model of ordinary differential 

and delay differential equations for blood partial pressures in human cardiovascular-respiratory 

system. Numerical simulations of the model illustrate the responses of arterial and venous pressures of 

cardiovascular-respiratory system due to its controls (heart rate and alveolar ventilation). The 

qualitative analysis of the model shows that the steady state is stable though the delays can cause 

transient oscillations around the equilibrium value. The numerical simulations confirmed the 

analytical analysis for a 30 years old woman during three different physical activities which are 

walking, jogging and running. 
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