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Abstract: Total Dominating Color Transversal Set is the combination of three concepts of graph theory, viz., 

Total Dominating Set, Transversal and Proper Coloring of vertices of a graph. It is defined as a Total 

Dominating Set which is also transversal of some 𝜒 - Partition of vertices of G. Here 𝜒 is the Chromatic number 

of the graph G. Total Dominating Color Transversal number of a graph is the cardinality of a Total Dominating 

Color Transversal Set which has minimum cardinality among all such sets that the graph admits. In this paper, 

we consider two graph products namely; Cartesian product and Kronecker product. We determine Total 

Dominating Color Transversal number of Cartesian product of Complete graphs and of Kronecker product of 

Complete k - Partite graphs. We find a necessary and sufficient condition under which this number for 

Cartesian product attains its lower bound and we also obtain lower bound of this number for Kronecker 

product. Additionally, we provide other related results with sufficient number of examples, wherever required. 

Keywords: Total Dominating Color Transversal Set; 𝜒 – Partition of a graph; Cartesian product; Kronecker 

product.

 

1. INTRODUCTION 

We begin with simple, finite, connected and undirected graph without isolated vertices. We know that 

proper coloring of vertices of graph G partitions the vertex set V of G into equivalence classes (also 

called the color classes of G). Using minimum number of colors to properly color all the vertices of G 

yields χ equivalence classes. Transversal of a χ - Partition of G is a collection of vertices of G that 

meets all the color classes of the χ – Partition. That is, if T is a subset of V( the vertex set of G) and 

{V1, V2, ...., Vχ} is a  χ  - Partition of G then T is called a Transversal of this χ  - Partition if T ∩ Vi ≠ 

∅, ∀ i ∈ {1, 2,....,  χ }.Total Dominating Color Transversal Set of graph G is a Total Dominating Set 

with the extra property that it is also Transversal of some such χ - Partition of G.  

We first mention definitions.  

2. DEFINITIONS 

Definition 2.1[4]: (Total Dominating Set) Let G = (V, E) be a graph. Then a subset S of V (the 

vertex set of G) is said to be a Total Dominating Set of G if for each v ∈ V, v is adjacent to some 

vertex in S. 

Definition 2.2[4]: (Minimum Total Dominating Set/Total Domination number) Let G = (V, E) be 

a graph. Then a Total Dominating set S is said to be a Minimum Total Dominating set of G if  S  = 

minimum { D : D is a Total Dominating set of G}. Here S is called γt −set and its cardinality, 

denoted by γt(G) or just by γt, is called the Total Domination number of G.  

Definition 2.3[1]: (𝛘 -partition of a graph) Proper coloring of vertices of a graph G, by using 

minimum number of colors, yields minimum number of  independent subsets of vertex set of G called  

equivalence classes (also called color classes of G). Such a partition of a vertex set of G is called a χ - 

Partition of the graph G. 
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Definition 2.4[1]: (Transversal of a 𝛘 - Partition of a graph) Let G = (V, E) be a graph with χ – 

Partition {V1, V2, ....., Vχ}. Then a set S ⊂ V is called a Transversal of this χ – Partition if S ∩ Vi≠ ∅, 

∀ i ∈ {1, 2, 3, ...., χ}. 

Definition 2.5[1]: (Total Dominating Color Transversal Set) Let G = (V, E) be a graph. Then a 

Total Dominating Set S ⊂ V is called a Total Dominating Color Transversal Set of G if it is 

Transversal of at least one χ - Partition of G.  

Definition 2.6[1]: (Minimum Total Dominating Color Transversal Set/ Total Dominating Color 

Transversal number) Let G = (V, E) be a graph and S ⊂ V be a Total Dominating Transversal Set of 

G. Then S is said to be a Minimum Total Dominating Color Transversal Set of G if  S  = minimum 

{ D : D is a Total Dominating Color Transversal Set of G}. Here S is called γtstd −set and its 

cardinality, denoted by γtstd (G) or just by γtstd , is called the Total Dominating Color Transversal 

number of G.  

Definition 2.7 [13]: (Cartesian product of Graphs) 

The Cartesian product G □ H of graphs G and H is the graph with vertex set  V (G)×V (H) and edge 

set {{(u, x), (v, y)} | either u = v and x is adjacent to y in H or u is adjacent to v in G and x = y}. 

Definition 2.8 [13]: (Kronecker / Direct/ Tensor/ product of Graphs) 

 The Kronecker product G×H of graphs G and H is the graph with vertex set  V (G)×V (H) and edge 

set {{(u, x), (v, y)} | {u, v} ∈ E(G) and {x, y} ∈ E(H)}. 

3. MAIN RESULTS  

First we state the following theorem taken from [1]. 

Theorem 3.1 [1]: If G is a graph with 𝛘 (G) = 2 then 𝛄𝐭𝐬𝐭𝐝(G) = 𝛄𝐭(G).  

We first discuss about Cartesian product of graphs. Below given remark will prove useful. 

Remark 3.2:  

1) By [9] we know that  χ (G □ H) = max {χ (G),  χ (H)}. 

2)  G □ H ≅ H □ G. So γtstd  (G □ H) = γtstd  (H □ G). 

3) This operation is commutative if the graphs are not labeled.     

4) G □ H is connected if and only if both G and H are connected. 

Theorem 3.3: Let G and H be two graphs.  𝛄𝐭𝐬𝐭𝐝 (G□H) = 2 if and only if                            

(1) 𝛘 (G) = 𝛘 (H) = 2 and 

(2) At least one of G or H is a path graph with two vertices and 𝛄(G) = 𝛄(H) = 1. 

Proof: Note that both G and H are connected graphs with δ (G) ≥ 1 and δ (H) ≥ 1.  

Suppose γtstd  (G□H) = 2. Then χ (G□H) ≤ 2 implies that χ (G□H) = 2. As χ (G□H) = max{ χ (G), χ 

(H)} = 2, χ (G) =  χ (H) = 2, which proves (1). 

Also γtstd  (G□H) = 2 implies that γt (G□H) = 2. So there exists a γt - Set D = {(a, x), (b, y)} of G□H 

which is also γtstd −  Set of G□H. Obviously either a = b or x = y.  

Assume a= b. Then x is adjacent to y in H. Therefore D = {(a, x), (a, y)}.   

Let c ≠ a be other vertex of G.  

Claim: V (H) = {x, y} 

Suppose  V (H)  > 2. Then there exists z ∈ V (H) ∖ {x, y}. Then clearly (c, z) cannot be dominated by 

any vertex in D = {(a, x), (a, y)}, which is contradiction as D is a Total Dominating Set of G□H. 

Hence V (H) = {x, y}. Therefore H is a path with two vertices. 

claim: {a} is a Dominating Set of G. 
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If {a} is not a dominating set of G then a is not adjacent to some vertex d(≠ a) of G. Then (d, x) 

cannot be dominated by any vertex in D = {(a, x), (a, y)}, which is contradiction as D is a Total 

Dominating Set of G□H. Therefore {a} is a Dominating Set of G. 

Hence γ(G) = γ(H) = 1. 

Assuming  x = y then, similarly as above, we prove that G is a path graph with two vertices and {x} is 

a dominating set of H. Hence again we prove at least one of G or H is a path graph with two vertices 

and γ(G) = γ(H) = 1. 

Conversely assume both (1) and (2).  Assume without loss of generality that H is a path graph with 

two vertices x and y. Assume that {a} is a Dominating Set of G.  

Consider D = {(a, x), (a, y)}. Let b be any other vertex of G. Then (b, z) (where z = x or z = y) is 

adjacent to some vertex of D. Also (a, x) and (a, y) are adjacent. So D is  Total Dominating Set of 

G□H. Hence γt(G□H) = 2.  

As χ (G) = χ (H) = 2, χ (G□H) = 2. By theorem 1, γtstd  (G□H) = γt(G□H) = 2. 

Remark 3.4: Phrase  „At least‟ appears in the above theorem 3. 3 because the theorem holds even if 

both G and H are path graphs with two vertices. Let us see, by example,  justification of  this 

statement. 

Example 3.5:  

 
          G                                   H 

       Fig. 1                            Fig. 2    

 
G□H 

Fig. 3 

 Clearly γtstd  (G□H) = 2. Both G and H are path graphs with two vertices and γ(G) = γ(H) = 1.  

Remark 3.6: We know that if the Domination number of a graph is one then the Total Domination 

number of the graph is two. On this basis we state the following corollary to our  theorem  3.3 

Corollary 3.7: Let G and H be two graphs. If 𝛄𝐭𝐬𝐭𝐝 (G□H) = 2 then                            

(1) 𝛘 (G) = 𝛘 (H) = 2  

(2) 𝛄𝐭(G) = 𝛄𝐭(H) =2.  
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Remark 3.8: Converse of above corollary 3.7 is not true, in general. The below given example 

justifies it. 

Example 3.9: Consider two graphs given below.  

 

                                             G                                                            H 

                                           Fig. 4                                                    Fig. 5 

Clearly χ (G) = χ (H) = 2 and γt(G) = γt(H) =2.  

Assume γtstd  (G□H) = 2. Then by theorem 3.3,  γ (G) = 1 which is contradiction as γ (G) = 2. So 

γtstd  (G□H) > 2. 

Theorem 3.10:  𝛄𝐭𝐬𝐭𝐝 (Km□Kn) = max {m, n} 

Proof:  We know that χ (Km □ Kn) = max {m, n}. Assume without loss of generality that max {m, n} 

= n. So γtstd  (Km □ Kn) ≥ χ (Km □ Kn) = n. Note that  Km □ Kn  have mn vertices. Consider the 

following table of mn vertices where ui‟s  and vj‟s, respectively, indicate the vertices of  Km and Kn. 

                 Table 1 

(u1, v1) (u1, v2) (u1, v3) .................. (u1, vn) 

(u2, v1) (u2, v2) (u2, v3) .................. (u2, vn) 

(u3, v1) (u3, v2) (u3, v3) .................. (u3, vn) 

.................. .................. .................. .................. .................. 

(um, v1) (um, v2) (um, v3) .................. (um, vn) 

For any fix i, 1≤ i ≤ m, Si = {(ui, vj) :  1≤ j ≤ n} is a Total Dominating Set of Km □ Kn. Note that <Si 

> ( for every i, 1≤ i ≤ m) is a clique of Km□Kn of order n. Hence assigning n distinct colors to all the 

vertices in Si, Si becomes a transversal of some χ – Partition of Km□Kn . Therefore γtstd  (Km□Kn) = n 

= max {m, n}.  

Now we discuss about Kronecker product of graphs. We begin with remark.  

Remark 3.11: 

  1) Kronecker Product is commutative and associative. 

  2) [14] G × H is connected if and only if both graphs are connected and at least one graph is               

      non bipartite. 

  3) By [8], G × H is bipartite if and only if at least one of G and H is bipartite. 

  4) [13]  χ(G × H) ≤ min { χ (G), χ (H)}.    

Theorem 3.12[6]. For any two graphs G and H, we have 𝛄𝐭 (G × H)≤ 𝛄𝐭 (G) 𝛄𝐭 (H). 

Lemma 3.13[7] If G = (V0 ∪ V1,E) and H = (W0∪ W1, F) are bipartite graphs, then                    

(V0 ×W0) ∪ (V1 ×W1) and (V0 ×W1) ∪ (V1 ×W0) are vertex sets of the two components of G × H. 

Theorem 3.14: Let G and H be two Graphs. Then  𝛄𝐭𝐬𝐭𝐝 (G × H) ≥ 3.  
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Proof: Let γtstd  (G × H) = 2. Then γt (G × H) = 2. So there exists a γt - set D = {(a, b), (c, d)} (say) 

of G × H.  But vertex (a, d) cannot be dominated by any vertex in D. Hence we get a contradiction. 

Hence the theorem.   

 Remark 3.15: The lower bound in the above theorem 3.14 is sharp. Example 3.18 justifies this. 

Theorem 3.16:  If G and H are, respectively, complete 𝐊𝟏 and 𝐊𝟐 Partite graphs  

 then  𝛄𝐭𝐬𝐭𝐝 (G × H) =   4,                 𝐊𝟏= 2 or 𝐊𝟐 = 2 

                                        𝛘 (G × H),  Otherwise. 

Proof: Case 1: K1= 2 and  K2 = 2 

As χ (G × H) = 2 by theorem 1, γtstd  (G × H) = γt (G × H). 

G × H is disconnected with two components and each component has at least two vertices. So           

γtstd  (G × H) ≥ 4.  Also So by theorem 3.12,   γtstd  (G × H) ≤ γt (G) γt  (H) = 2 . 2 = 4. Theorefore 

γtstd  (G × H) = 4. 

Case 2: Either  K1= 2 or K2 = 2. 

Note that in this case G × H is connected. 

As  Kronecker  Product is Commutative , we assume without loss of generality K1= 2  and            

K2 > 2. 

So χ (G × H) = 2. Hence by theorem 1,  γtstd  (G × H) = γt (G × H). 

Claim : Every Total Dominating Set of  G × H contains four vertices. 

Suppose that D is Total Dominating Set of  G × H.  

Assume   D  = 3. 

Let D = {(a, b), (c, d), (e, f)} . Note that < D> is a connected graph as we are dealing with Total 

Domination theory.     

As χ (G × H) = 2,  <D> is not complete sub graph of G × H. So assume without loss of generality 

that (a, b) is adjacent to (c, d) and (c, d) is adjacent to (e, f).   

 

<D>  Fig. 6 

Here we first note that as G and H are, respectively, Complete K1- Partite  and Complete K2 - Partite 

graphs they have unique χ – Partitions. 

(a, b) is adjacent to (c, d) implies that a is adjacent to c in G. Hence color class of a and color class of 

c are different.  (c, d) is adjacent to (e, f) implies that c is adjacent to e in G. Hence color class of c 

and color class of e are different. Therefore a and e are in same color class , as G is bipartite graph. 

Hence a and e are not adjacent. 
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Definitely (a, d) ∈ V (G×H) cannot be dominated by (a, b) and (c, d). Also also as a and e are not 

adjacent (a, d) cannot be dominated by (e, f) as well. So D is not a Dominating Set, which is 

contradiction to our assumption that D is a Total Dominating Set of   G × H. Hence  D  ≥ 4. 

Therefore γt (G × H) ≥ 4 and so γtstd  (G × H) ) ≥ 4. Also by theorem 3.12,   γtstd  (G × H) ≤ γt 

(G) γt  (H) = 2 . 2 = 4. Therefore γtstd  (G × H) = 4. 

Case 3:  K1 > 2 and  K2 > 2. 

The graph G × H is connected. 

In this case,  𝜒 (G × H) > 2. 

We know that  γt (G × H) ≥ 3, by theorem 3.14. 

Consider D = {(a, b), (c, d), (e, f)} ⊂V(G × H) such that a, c and e are in different color classes of the  

K1  - Partition of G and b, d and f are in different color classes of  the  K2 -  Partition of H. Then <D> 

is complete sub graph of G × H. 

Claim: D is a Total Dominating Set of G × H. 

Consider (u, v) ∈ V(G × H). If (u, v) ∈ D then as <D> is complete is a complete graph,  it is  

dominated  by all the other vertices  of D. So assume (u, v) ∈ V(G × H) ∖ D. Suppose (u, v) is not 

dominated by (a, b) then u is not adjacent to a in G or v is not adjacent to b in H.  

Sub Case 1: u is not adjacent to a in G and v is not adjacent to b in H. 

Then color class of u and a is same in G and color class of v and b is same in H. Then as (a, b) is 

adjacent to (c, d) the color classes of a and c are different in G and color classes of b and d are 

different in H. So u is adjacent to c in G and v is adjacent to d in H. Hence (c, d) dominates (u, v). 

Sub Case 2: Either u is not adjacent to a in G or v is not adjacent to b in H. 

Without loss of generality assume that u is not adjacent to a in G and v is adjacent to b in H. So color 

class of  u and a is same in G and v and b are in  different color classes in H. Trivially as  a, c and e 

are in different color classes in G, u is adjacent to c and e both. Now if v is adjacent to d then (c, d) 

dominates (u, v) and if v is not adjacent to d then v is adjacent to f as color class of v and d is same 

and hence (e, f) dominates (u, v). 

Hence from both the above two cases D is a Minimum Total Dominating Set of G × H with <D> a 

complete subgraph of G × H. Assign distinct colors to distinct vertices of <D>. If K =  χ (G × H). 

Add one vertex from each remaining K – 3 color classes of the  K – Partition of G × H. The resultant 

set becomes a Minimum Total Dominating Color Transversal of G× H with cardinality K.  

Hence the theorem.   

Corollary 3.17:  𝛄𝐭𝐬𝐭𝐝 (𝐊𝐦 ×  𝐊𝐧 ) =     4,                 m= 2 or n =2. 

                                                                 min {m, n}, otherwise.    

Proof:  By theorem 3.16 and as χ (Km  ×  Kn  ) = min {m, n}.  

Example 3.18: Consider two graphs G and H as shown below: 

 
                                         G                                                                   H                    

                                      Fig. 7                                                         Fig. 8 
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G × H 

Fig. 9 

Cleary {(a, x), (b, y), (c, z)} is a γtstd  - Set of G. Hence γtstd (G) = 3 = χ (G × H),  which justifies the 

theorem 3.16 and corollary 3.17. 

4. CONCLUSION  

We have explored some properties of Total Dominating Color number of two types of products of 

graphs viz; Cartesian product and Kronecker product.  Discussion of this number for other graph 

products like Lexicographic product, Strong product is also possible. One may discuss about this 

number for product of cycle graphs, path graphs and other graphs. One this is for sure that for any 

further discussion of this number for different product of graphs, in general, will require rigorous 

work and analysis on known results of Proper coloring and Total Domination in graphs. One may 

have to explore some more preliminaries for further discussion. 
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