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1. INTRODUCTION 

The well-known means in literature such as arithmetic mean, geometric mean harmonic mean and 

contra harmonic mean are presented by pappus of Alexandria. In Pythagorean School on the basis of 

proportion and also some of the other means like Heron mean and  Centriodal Mean are defined as 

follows [1,2] and some interesting results on above said means are discussed in [3-8].    

For two positive real numbers ba & ; 
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Jamal Rooin and Mehdi  Hassni [9], introduced the homogeneous functions f(x) and g(x), also 

established some convexity results and refinements to Ky-Fan-type inequalities.where      
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In [10], authors studied the convexity(concavity) of the following ratio of difference of means.      
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Some fruitful results related to Schur convexities were also found in [11-22].  

In this paper, we study the Schur, Schur harmonic and Schur geometric convexity of ratio of  

means ),( baM CAGH , ),( baM GHAHe
, ),( baM GHCH e

& ),( baM GCAH e
and some applications of these 

ratio of difference of means.  

2. PRELIMINARY RESULTS AND DEFINITIONS 

In 1923, the Schur Convex function was introduced by I Schur, and proved many important 

applications to analytic inequalities. In 2003, X. M. Zhang propose the concept of Schur-

geometrically convex function which is an extension of Schur-convexity function. In recent years, the 

Schur convexity, Schur geometrically convexity and Schur harmonic convexity have attracted the 

attention of a considerable number of mathematicians ([11],- [21]).  For convenience of readers, we 

recall some definitions as follows: 

Definition 2.1.[3,7]  Let   nxxxxx ,........,, 321  and   n

n Ryyyyy  ,........,, 321  

1. Let x  is said to be majorized by y  (in symbol yx  )   

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  where nxx  .......1  and nyy  .......1 are rearrangement of x  

 and y  in descending order. 

2. 
nR   The function 

nR:  is said to be schur convex function on   if yx    on  

  implies ).()( yx      is said to be a Schur concave function on    if and only if  

  is Schur convex. 

Definition 2.2.[22]  Let   nxxxxx ,........,, 321  and    n

n Ryyyyy ,........,, 321 .
nR  is 

called geometrically convex set if 
n

nn Ryxyx 


.......11
 for all x and y  where  1,0,   with 

1  . Let   nR   The function 
n

R:  is said to be schur geometrically convex 

function on   if    nn yyxx ln.......lnln.......ln    on   implies ).()( yx    Let  is said to 

be a Schur geometrically concave function on    if and only if   is Schur geometrically convex. 

Definition 2.3.[3,7]  The set 
nR  is called symmetric set if  x    implies px  for every 

nn   permutation matrix p . The function 
nR:  is said to be symmetric if every permutation 

matrix p ;   ).()( xpx    for all x . 

we introduce the ratio of difference of means as follows: 
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Lemma 2.1.[3,7]  Let 
nR  R:  is symmetric and convex function. Then   is Schur 

convex on  . 

Lemma 2.2.[9]  For .dcba   the function 
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                    i) Convex, if 0bcad  

                   ii) Concave if 0bcad  

                   iii) Equality holds if 0bcad . 

 Lemma 2.3.[22]  Let  
nR  be symmetric with non empty interior  convex set and let 
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3. SCHUR PROPERTIES ON RATIO OF DIFFERENCE OF MEAN 

In this section, the Schur, Schur geometric and Schur harmonically convexities on ratio of difference 

of mean are established by finding the partial derivatives. 

Theorem 3.1.  The ratio of difference of means 
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 By finding the partial derivatives of  ),( baf and with simple manipulation gives 
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 Proof of (i),  from eqn (1), we have 

              
    



































2

22

2

22

9

10
)(

9

)(8
1)(

ba

baba
ba

ba

baba
ba

b

f

a

f
      

 Then   
  
































2

22
2

9

10
)(

ba

baba
ba

b

f

a

f
bas  0  for all ba &  

 This verifies the condition for Schur convexity.      

 Proof of (ii), from eqn (1), we have 
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 This verifies the condition for Schur geometrically convexity.       

 Proof of (iii),  As above  we have 
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 This verifies the condition for Schur Harmonically convex.    

 Thus the proof of theorem 3.1 is completed.        

Theorem 3.2.  The ratio of difference of means 
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 By finding the partial derivatives of ),( baf  and with simple manipulation gives                                                                                                
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 Proof  of (i),  from eqs (2) & (3) we have              
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 This  verifies the condition for Schur convex.  

 Proof (ii),  from eqs (2) & (3) we have                    
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 This  verifies the condition for Schur geometrically convex.                       

 Proof of (iii),  from eqs (2) & (3) we have                        
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This  verifies the condition for Schur harmonically convex. 

Thus the proof of theorem 3.2 is completed. 

Theorem 3.3.  The ratio of difference of means 

GHAH
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e
M

M
  is  

                       (i)  Schur convex.  

                       (ii) Schur geometrically convex. 

                       (iii) Schur harmonically convex  is for all ba  . 

Proof: Similar argument as discussed in theorem 3.1 and 3.2 gives the proof of theorem 3.3. 
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