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Abstract: The aim of this paper is to study the local stability of discrete epidemic models with specific 

nonlinear incidence rate. So, we establish criteria on local stability of the disease-free equilibrium, furthermore, 

using Schur-Cohn Criterion, important criterion on local stability of endemic equilibrium is also determined.  
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1. INTRODUCTION 

The discrete time models are more convenient to describe epidemics than the continuous ones. On the 

one hand, the statistic data concerning diseases is collected in discrete time, on the other hand, the 

discrete-time models may escape some mathematical complexities like regularity of solutions, 

adequate topology and the choice of state space. Furthermore, the numerical simulations of 

continuous time models are obtained by the way of discretization. 

In literature, a huge variety of continuous-time models have been developed in order to understand 

disease transmission dynamics and to study epidemiological processes [1-3].  Y.Enatsu [4] apply  a 

variation of Euler  backward discretization in order  to study  a discrete  SIR epidemic  model with  a 

class of nonlinear  incidence  rate  and  a distributed latent period. S.Jang [5] proposes and analyses a 

simple discrete-time West Nile epidemic model. The derivation of this model is based on a 

continuous-time model proposed by Cruz-Pacheco et al [6].  S.Jang  and S.Elaydi  [7] obtain  systems  

of difference  equations  from  the  continuous   time  model  by  using  nonstandard discretization 

technique. They make comparisons between the continuous-time model and its discrete counterpart. 

This paper puts the stress on different important issues and provides many advantages.  Firstly,  we 

study a discrete SIR epidemic  model (1) with specific nonlinear incidence rate                                                             

βSk Ik /(1 + α1 Sk  + α2 Ik + α3 Sk Ik), where β, α1, α2   and  α3  ≥  0 are  constants.  Sk   is the  number  

of susceptible  at  time  k,  whereas  Ik  is the  number  of infected  at  time  k.   It  is very  important to  

note  that this  incidence  rate  becomes  the  bilinear  incidence  rate  if α1  = α2  = α3  = 0, the  

saturated incidence  rate  if α1 = α3 = 0 or α2 = α3 = 0, the  modified saturated incidence rate  proposed  

in [8, 9] when α3 = 0, and  Crowley-Martin functional  response  presented in [10-12]    if α3   = α1 α2 . 

Secondly, this model is studied in discrete-time, is more accurate and more convenient as we 

explained above. Thirdly, we set rigid criteria on local stability in two cases: disease free equilibrium 

and endemic equilibrium. 

This paper is organized as follows. In the next section, we present a discrete SIR epidemic model with 

specific nonlinear incidence rate, its basic reproduction number and its jacobian matrix in order to 

study stability of the epidemic model. The section 3 puts the stress on stability of disease free 

equilibrium. In the section 4, we rely on Schur-Cohn Criterion to study stability of endemic 

equilibrium.  Finally, conclusions are summarized in section 5. 
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2. STABILITY OF THE EPIDEMIC MODEL  

We consider a discrete SIR epidemic model. The population is divided into three disease-state 

compartments: susceptible  individuals  (S), people who can catch  the disease; infectious (infective)  

individuals  (I), people who have the  disease and  can transmit the  disease; recovered  individuals  

(R),  people who have recovered  from the  disease. We assume that an individual can be infected only 

through contacts with infectious individuals and that immunity is permanent. Our model is described 

as follows 

 

With S0 ≥ 0, I0 ≥ 0 and R0 ≥ 0 are given. 

 

Note that k = 0, 1, 2, ... , T − 1, is the index  for the  time  steps.  The transitions between different 

states are described by the following parameters: 

Λ                is the recruitment rate of susceptible; 

β                 is the effective contact rate; 

µ                is the natural mortality rate; 

                        d                 is the disease induced  death  rate; 

                        r                 is the recovery rate; 

α1 , α2   and α3     are positive  constants. 

 Since R does not appear in the first two equations, it is sufficient to analyze the behavior of solutions 

considering the first two equation of the system (2). 

 

The basic reproduction number of system (2), denoted by 0  is given by 

 

We study the local behavior of the model around each of the fixed points. So, we compute the 

variation  matrix corresponding  to each fixed point in order to study  the local stability analysis  of 

the model above. 

The jacobian matrix of this system at an arbitrary point E(S, I) is described as follows 

 

Where  Tk  = 1 + α1 Sk  + α2 Ik + α3 Sk Ik . 
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3. STABILITY OF DISEASE-FREE EQUILIBRIUM 

The system (2) always has disease-free fixed point  Ef (  , 0).  Then, the Jacobian matrix of this 

model at this point is given by 

 

The two eigenvalues of J (Ef) are    = 1 − µ and     =  − 1  (µ + d + r) + 1. 

Theorem 3.1.         

a)  Ef   is locally asymptotically stable if and only if 

           1 -  < < 1                                                                                                                     (6)                                                                                    

b)  Ef   is not locally unstable. 

c)  Ef   is saddle if and only if     

               < 1-   or > 1                                                                                                         (7) 

d)  Ef   is non hyperbolic if and only if  =  1  or  =  1 -   .    

 Proof.                                                                                                                

Let  and  be two eigenvalues of matrix J(E).                                          

We recall some definitions of topological types for a fixed point E(S, I): 

(i) E(S,I)  is called a sink if  < 1 and  < 1, so the sink is locally asymptotically  stable. 

(ii) E(S,I)  is called a source if  > 1 and  > 1, so the source is locally unstable. 

(iii) E(S,I)  is called a saddle if  < 1 and  > 1 or (  > 1 and  < 1). 

(iv) E(S,I)  is non-hyperbolic if either   = 1 or  = 1 

Then  

a) μ is the natural mortality rate, so can’t reach 1. Then   < 1 is valid all time. 

 < 1 if and only if  < 1 if and only if 1 -  < < 1.                              

b)  > 1 isn’t possible, so Ef  is not locally unstable. 

c)  < 1 is valid all time.  > 1 if and only if < 1-   or > 1.                              

d)  < 1 if and only if = 1 or = 1-   . 

4. STABILITY OF ENDEMIC EQUILIBRIUM 

The system has endemic steady state E*(S*, I*) which exists when > 1  and satisfies the 

following constraints (8) and (9). 

 

 Where   A = -α3μ 

               B = - α1(μ + d + r) + α3Λ - α2μ - β 

               C = μ + d + r + α2Λ 

The discriminant   Δ = B
2
 - 4AC 
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Theorem 4.1 

If α3 = 0, the system (2) has endemic steady state E*(-C/B, a - bC/B). 

If α3 ≠ 0, the system (2) has endemic steady state as long as |B| < √Δ.                                         

Furthermore, this endemic steady state S1* is single and S1* = (-B-√Δ)/2A.   

Proof. 

The epidemiology nature of the system imposes the positivity of susceptible then S* > 0. 

If S* = 0 then C = 0 (contradiction), so S*  > 0. 

If  α3 = 0 then A = 0 and S* = -C/B. 

If α3 ≠ 0, we have two solutions S1* = (-B-√Δ)/2A and S2* = (-B+√Δ)/2A. 

We have S2* > 0 and A < 0 so (-B+√Δ) < 0 then -4AC < 0 (contradiction), we deduce  B < √Δ  and 

S2* is not solution. We have  S1* > 0 and  A < 0 so B > -√Δ. 

Theorem 4.2 

Assume that > 1.  E* is asymptotically stable if the following condition is satisfied 

 

Where 

 Proof. 

The characteristic equation of Jacobian matrix J(E*) is 

 

 Where 

 

 From the Schur-Cohn criterion [13], the zeros of the characteristic polynomial (12) lie inside the unit 

disk if and only if 

 

In this case  

If 1 + p + q > 0, then 

 

If 1 - p + q > 0, then 

 

If 1 - q > 0, then 

 

The three conditions above are satisfied if we have (10). 
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5. CONCLUSION 

In this work, we have established criteria on stability of disease free equilibria depending on 

reproduction number , otherwise, Ef is locally asymptotically stable if and only if                             

1 -  < < 1.  On the other side, we prove that E*(S* = -C/B, I* = a – bC/B) if  α3 = 0.      

The system has single endemic steady state S1*= (-B-√Δ)/2A if   α3 ≠ 0   and B < √Δ.  We have also 

determined criterion of stability (10) concerning endemic equilibrium. Finally, the work in this paper 
contributes to a growing literature on applying stability techniques to epidemiology. 
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