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Abstract: We obtain a list of simple classes of singularities of function germs with respect
to the quasi swallowtail equivalence relation. We discuss its connection with the singularities of
Lagrangian projections in presence of a swallowtail. We also describe the bifurcation diagrams and
caustics of simple quasi swallowtail singularities.
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1 INTRODUCTION

In 2007, Vladimir Zakalyukin classified function germs with respect to new non-standard equiv-
alence relations (see [1, 2]) which he named quasi equivalences. He was motivated by the needs of
the theory of Lagrangian maps of singular varieties. In [2], the quasi relation is aimed to control
positions of only critical points of functions defined on a space equipped with a smooth hypersurface
and allow absolute freedom outside the critical locus. Later on and based on Zakalyukin’s idea in
[3, 4], more general settings were considered and similar equivalence relations were introduced for
any hypersurface or a complete intersection which may be regular, singular or reducible . Such a
hypersurface is called a border and the relation is called quasi border equivalence. In particular,
for the hypersurfaces being a cylinder over a corner or a cusp, the lists of simple “in the sense of
Arnold” classes of singularities of function germs with respect to quasi border equivalence relations
were obtained there, respectively.

In spite of a rather artificial nature of the definitions, quasi border singularities have very natural
applications. Their discriminants reflect the behavior of critical points of a function (for example,
of its global extremum) on domains with borders.

Arnold’s classical boundary function singularity with n parameters is related to a projection of a
pair of n dimensional Lagrangian submanifolds which have (n−1)-dimensional regular intersection
[5]. The quasi border equivalence relation for generating families of functions keeps information
only on one Lagrangian submanifold of the pair and on its intersection with the second component.
So, it is a more natural model for applications involving Lagrangian submanifolds with boundary.
Allowing singular boundaries, we arrive at a notion of a Lagrangian submanifold with a border.
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This is a pair (L,Γ) consisting of a Lagrangian submanifold Ln ⊂ M = T ∗Rn and of an (n − 1)-
dimensional isotropic variety Γ ⊂ L. Such an object arises in various singularity theory applications
to differential equations and variational problems. Isotropic submanifolds play the role of the initial
data set with some inequality constraints.

The quasi border bifurcation diagrams of function germ deformations consist of two components,
W0 and W1. The W0 is the ordinary discriminant which corresponds to all critical points of the
deformation. The W1 is a subset of W0 which corresponds to the critical points on the border and
satisfies extra equations defining the border. So the components have different dimensions. The
caustic of a quasi border function deformation also consists of two strata or more. The first one is
the ordinary caustic. The other stratum is the projection of the component W1 of the bifurcation
diagram to the base of the reduced deformation. The dimensions of these components of a caustic
coincide. The geometry of bifurcation diagrams and caustics of simple quasi boundary and quasi
corner singularities in R3 and R4 is described in [6].

The aim of the present paper is to consider a different type of a border. In particular, the
border is cylinder over a swallowtail. The paper is organized as follows. In section 2 we recall
the main definitions of the pseudo and quasi border equivalence relations from [4], and derive
an expression of the quasi swallowtail tangent space. In section 3 we obtain the classifications
of simple quasi swallowtail singularities. In section 4 the caustics and bifurcation diagrams of
simple quasi swallowtail singularities are described. In section 5 we discuss the singularities of
Lagrangian projections in presence of a swallowtail. Finally, in section 6 we finish the paper by a
brief conclusion.

2 PSEUDO AND QUASI BORDER EQUIVALENCE RELATIONS

Consider a coordinate space Rn =
{
w = (x, y)

}
equipped with a cylindrical hypersurface Γ given

by the equation B(x) = 0, where x = (x1, x2, . . . , xm) ∈ Rm and y = (y1, y2, . . . , yn−m) ∈ Rn−m.
We shall call Γ a border.

The general statements below are valid for reasonably good borders. For rigorousness, we assume
that the border is a stratified set, and the stratification satisfies the Whitney condition A.

We consider germs of C∞ functions f : (Rn, 0)→ R, in local coordinates w as above. We denote
by Cw the ring of all such germs at the origin and by Mx,y the maximal ideal in Cx,y.

Definition 2.1 [4] Two functions f0, f1 : Rn → R are called pseudo border equivalent if there
exists a diffeomorphisim θ : Rn → Rn such that f1 ◦ θ = f0, and if a critical point c of the function
f0 belongs to the border Γ then θ(c) also belongs to Γ and vice versa, if c is a critical point of f1

and belongs to Γ then θ−1(c) also belongs to Γ.

A similar definition can be introduced for germs of functions.

Remark 2.2 We assume in the definition 2.1 that if a critical point c belongs to some stratum of
Γ then θ(c) belongs to the same stratum.

Clearly, the pseudo border equivalence is an equivalence relation: if f1 ∼ f2 and f2 ∼ f3 then
f1 ∼ f3. However, this relation is not a group action as the set of admissible diffeomorphisms
depends on a function.
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In the current paper, we consider the case when Γ is a cylinder over a swallowtail. The swal-
lowtail is realized as the subset Γ = Γswl ⊂ R3 consisting of all points

{
(x1, x2, x3)

}
such that

z4 + x3z
2 + x2z + x1 = 0 has multiple real roots. In this case the pseudo border equivalence will

be also called pseudo swallowtail equivalence.

Recall that a vector field v preserves a border Γ = {B(x) = 0} if the Lie derivative LvB belongs
to the principal ideal generated by B. Such vector fields v are tangent to Γ. The module SΓ of
all germs of C∞ vector fields preserving a germ (Γ, 0) ⊂ (Rn, 0) is the Lie algebra of the group
of diffeomorphims of (Rn, 0) preserving (Γ, 0). The module SΓ is called the stationary algebra of
(Γ, 0). Due to classical Zakalyukin’s algorithm [7] to write out basic vector fields tangent to the
discriminant of an isolated function singularity, we have

SΓswl
=

{[
4x1h1 −

x2x3

2
h2 −

3x2
2

4
h3

] ∂

∂x1
+
[
3x2h1 + (4x1 − x2

3)h2 − 2x2x3h3

] ∂

∂x2

+
[
2x3h1 + 3x2h2 + (4x1 − x2

3)h3

] ∂

∂x3
+

n−3∑
i=1

ki
∂

∂yi
: h1, h2, h3, ki ∈ Cw

}
.

Here x = (x1, x2, x3) ∈ R3 and y = (y1, y2, . . . , yn−3) ∈ Rn−3.

Definition 2.3 [4] Let J be an ideal in Cw, then we define the radical Rad(J) of the ideal J as
the set of all elements in Cw, vanishing on the set of common zeros of germs from J :

Rad(J) = I(V (J)),

where

V (J) = {w ∈ Rn : h(w) = 0 for all h ∈ J} ,

and

I(V (J)) = {ϕ ∈ Cw : ϕ(w) = 0 for all w ∈ V (J)} .

Remark 2.4 In general, the radical of an ideal behaves badly when the ideal depends on a pa-
rameter [4].

Suppose that all function germs in a smooth family ft are pseudo swallowtail equivalent to the
function germ f0, ft ◦ θt = f0, t ∈ [0, 1], with respect to a smooth family θt : (Rn, 0)→ (Rn, 0) of
germs of diffeomorphisms such that θ0 = id and t ∈ [0, 1]. Then we have the homological equation:

−∂ft
∂t

=
3∑
i=1

∂ft
∂xi

Ẋi(t) +
n−3∑
j=1

∂ft
∂yj

Ẏj(t),

where the vector field

vt =
3∑
i=1

Ẋi(t)
∂

∂xi
+
n−3∑
j=1

Ẏj(t)
∂

∂yj

generates the phase flow θt.
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Denote by Rad{It} the radical of the gradient ideal It of the function ft. Then by similar
considerations to that in [2, 3, 4], the components of vt satisfy the following:

Ẋ1(t) ∈

{
4x1h1 −

x2x3

2
h2 −

3x2
2

4
h3 +Rad{It}

}
,

Ẋ2(t) ∈

{
3x2h1 + (4x1 − x2

3)h2 − 2x2x3h3 +Rad{It}

}
,

Ẋ3(t) ∈

{
2x3h1 + 3x2h2 + (4x1 − x2

3)h3 +Rad{It}

}
,

and Ẏi(t) ∈ Cw, where h1, h2, h3 ∈ Cw.

Due to Remark 2.4 we modify the pseudo equivalence relation to have a better parameter
dependence. Namely, we replace Rad{It} by the ideal It itself in the equivalence definition. This
provides us the notion of the quasi swallowtail equivalence.

Definition 2.5 Two functions f0, f1 : Rn → R are called quasi swallowtail equivalent, if they are
pseudo swallowtail equivalent and there is a family of functions ft which depends continuously on
parameter t ∈ [0, 1] and a continuous piece-wise smooth family of diffeomorphisms θt : Rn → Rn
also depending on t ∈ [0, 1] such that: ft ◦ θt = f0 , θ0 = id and the components of the vector field
vt generating θt on each segment of smoothness satisfy the following:

Ẋ1(t) ∈

{
4x1h1 −

x2x3

2
h2 −

3x2
2

4
h3 + {It}

}
,

Ẋ2(t) ∈

{
3x2h1 + (4x1 − x2

3)h2 − 2x2x3h3 + {It}

}
,

Ẋ3(t) ∈

{
2x3h1 + 3x2h2 + (4x1 − x2

3)h3 + {It}

}
,

and Ẏi(t) ∈ Cw, where h1, h2, h3 ∈ Cw.

Remarks 2.6

1. Such a family θt of diffeomorphisms generated by the vector field vt as well as the vector field
itself will be called admissible for the family ft.

2. The tangent space TQSWLf to the quasi swallowtail equivalence class of f has the following
description:

TQSWLf =

{
∂f

∂x1

(
4x1h1 −

x2x3

2
h2 −

3x2
2

4
h3 +

3∑
i=1

∂f

∂xi
Ai

)

+
∂f

∂x2

(
3x2h1 + (4x1 − x2

3)h2 − 2x2x3h3 +
3∑
i=1

∂f

∂xi
Bi

)

+
∂f

∂x3

(
2x3h1 + 3x2h2 + (4x1 − x2

3)h3 +

3∑
i=1

∂f

∂xi
Ci

)

+
n−3∑
i=1

∂f

∂yi
Di : h1, h2, h3, Ai, Bi, Ci, Di ∈ Cw

}
.
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Due to the inclusion I2
0 ⊂ TQSWLf ⊂ I0, where I0 is the gradient ideal of f , we have

Proposition 2.7 A function germ f has a finite codimension with respect to the quasi swallowtail
equivalence if and only if f has a finite codimension with respect to the right equivalence.

Definition 2.8 Two function germs are said to be stably quasi swallowtail equivalent if they become
quasi swallowtail equivalent after the addition of non-degenerate quadratic forms in an appropriate
number of extra cylindrical variables.

2.1 Basic Techniques of the Classification and Prenormal Forms

We will use Moser’s homotopy method and the following technique which is essential for our normal
form reduction in Section 3 to establish quasi swallowtail equivalence between function germs. It
is similar to Lemma 8.1 in [3] and Lemma 2.10 in [4].

Let us fix a convenient Newton diagram ∆ ⊂ Zn≥0. The ideals Sγ of function germs of the
Newton order at least γ, γ ≥ 0, equip the ring Cw with the Newton filtration: S0 = Cw, Sδ ⊃ Sγ
if δ < γ [8]. We assume here that the scaling factor for the orders is chosen so that functions with
the Newton diagram ∆ have order N .

Let f = f0 +f∗ be a decomposition of a function germ f into its principal part f0 of the Newton
degree N and higher order terms f∗. We assume that f0 has a finite codimension with respect to
the right equivalence.

Lemma 2.9 Consider a monomial basis of the linear space Cw/TQSWLf0. Let e1(w), e2(w),
. . . , es(w) be all its elements of Newton degrees higher than N .

Suppose that for any ϕ ∈ Sγ \ S>γ , γ > N :

1. There is an admissible vector field ẇ =
∑
ẇi

∂
∂wi

where ẇ = (ẋ1, ẋ2, ẋ3, ẏ1, ẏ2, . . . , ẏn−3),

ẋ1 = 4x1h1−
x2x3

2
h2−

3x2
2

4
h3+

n∑
i=1

A1,i
∂f0

∂wi
, ẋ2 = 3x2h1+(4x1−x2

3)h2−2x2x3h3+
n∑
i=1

A2,i
∂f0

∂wi
,

ẋ3 = 2x3h1 + 3x2h2 + (4x1 − x2
3)h3 +

n∑
i=1

A3,i
∂f0

∂wi
, and ẏ1, . . . , ẏn−3 ∈ Cw,

with h1, h2, h3, A1,i, A2,i, A3,i ∈ Cw, such that

ϕ =
n∑
i=1

∂f0

∂wi
ẇi + ϕ̂+

s∑
i=1

ciei(w),

where ϕ̂ ∈ S>γ and ci ∈ R.

2. Moreover, for any δ, N < δ < γ, and any ψ ∈ Sδ the expression

E(ψ,ϕ) =
3∑
i=1

∂ψ

∂xi

ẋi +
n∑
j=1

Ai,j
∂ψ

∂wj

+ 2
3∑
i=1

∂f0

∂xi

 n∑
j=1

Ai,j
∂ψ

∂wj

+
n−3∑
i=1

∂ψ

∂yi
ẏi

belongs to Sγ.
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Then any germ f = f0 + f∗ is quasi swallowtail equivalent to a germ f0 +
s∑
i=1

aiei, where ai ∈ R.

Remark 2.10 A version of the Lemma is also valid for functions with the Newton principal part
f0 of infinite right equivalence codimension, which is the same as having dim (Cw/TQSWLf0)
=∞. Namely, still assuming the Newton degree of f0 being N , let e1(w), . . . , es(w) be the degrees
higher than N part of a monomial basis of Cw/ (TQSWLf0 + SM ) for some M > N . Assume the
conditions of Lemma 2.9 hold for all γ < M . Then, any function with the Newton principal part
f0 is quasi swallowtail equivalent to

f0 +
s∑
i=1

aiei + Ψ, where Ψ ∈ SM .

2.2 Quadratic Terms

Let f : (Rn, 0)→ (R, 0) be a function germ of the form

f(x, y) = f2(x, y) + f3(x, y),

where f2 is a quadratic form in x and y, and f3 ∈M3
x,y.

Remark 2.11 A version of Lemma 2.12, Lemma 2.13, Lemma 2.14 and Lemma 2.15 in [4] are
also true for functions when the cuspidal edge replaced by Γswl. In fact, the components of the
vector fields used there in their proofs are only from the gradient ideal of a family of functions.
The phase flow of such vector fields leaves all critical points of the family fixed. Therefore, the
family of diffeomorphisms generated by such vector fields is also admissible for quasi swallowtail
equivalence. We state them below for Γswl with details of their proofs.

Lemma 2.12 Let f : (R3, 0) → (R, 0) be a function germ at the origin in local coordinates x1, x2

and x3 only. If f2 is a non-degenerate quadratic form then f is quasi swallowtail equivalent to
±x2

1 ± x2
2 ± x2

3.

Proof. Since f2 is a non-degenerate quadratic form, vector fields with components from the
gradient ideal of a function with a non-degenerate quadratic part are all vector fields vanishing at
the origin. Therefore any family of diffeomorphisms preserving the origin is admissible, and the
Lemma follows from the standard Morse Lemma. �

Let n ≥ 3 and set f∗(y) = f |x=0. Denote by r∗ the rank of the second differential d2
0f
∗ at the

origin. Set c = n− 3− r∗. Denote by r the rank of the second differential d2
0f at the origin.

Lemma 2.13 (Stabilization) The function germ f(x, y) is quasi swallowtail equivalent to a germ
r∗∑
i=1
±y2

i + g(x, ỹ), where ỹ ∈ Rc and g∗ ∈ M3
ỹ. For quasi swallowtail equivalent germs f , the

respective reduced germs g are quasi swallowtail equivalent.

Proof. Up to a linear transformation in y, we have

f =
r∗∑
i=1

±y2
i +

n−3∑
i=1

3∑
j=1

ai,jyixj +Q2(x) + f3(x, y), (1)
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with f3 ∈M3
x,y and Q2 a quadratic form in x only.

Let ŷ = (y1, y2, . . . , yr∗) and ỹ = (yr∗+1, . . . , yn−3) ∈ Rn−3−r∗ . Then, (1) can be written as

f1 =

r∗∑
i=1

±y2
i + ϕ(x, ŷ, ỹ) + f̃(x, ỹ),

where

ϕ =
r∗∑
i=1

3∑
j=1

ai,jyixj +
r∗∑
l=1

ylϕ̃l(x, y) with ϕ̃l ∈M2
x,y,

and

f̃ = Q2(x) +
n−3∑

i=r∗+1

3∑
j=1

ai,jyixj + f̃3(x, ỹ) with f̃3 ∈M3
x,ỹ.

We now aim to find a family

θt : (x, y) 7→
(
x, Ŷt(x, ŷ), ỹ

)
of diffeomorphisms which eliminates ϕ.

Take a family ft =
r∗∑
i=1
±y2

i + tϕ(x, ŷ, ỹ)+ f̃t(x, ỹ) which joins f1 and f0 =
r∗∑
i=1
±y2

i + f̃0(x, ỹ) with

t ∈ [0, 1] and f̃ = f̃1. Here, f̃t and f̃0 are unknown. So, we want to solve the homological equation
for ẏ and simultaneously for f̃t .

The homological equation takes the form

−∂ft
∂t

=

3∑
i=1

∂ft
∂xi

ẋi +

r∗∑
i=1

∂ft
∂yi

ẏi +

n−3∑
j=r∗+1

∂ft
∂yj

ẏj . (2)

Note that ẋ1 = ẋ2 = ẋ3 = ẏj = 0, j = r∗ + 1, . . . , n− 3, as x and ỹ do not change with t.

Thus, (2) can be written as

−(ϕ+
∂f̃t
∂t

) =

r∗∑
i=1

(±2yi + t
∂ϕ

∂yi
)ẏi. (3)

Set zi = ±2yi + t ∂ϕ∂yi , i = 1, . . . , r∗, which are known functions. Note that the matrix ( ∂zi∂ŷj
) has

the maximal rank at the origin for any value of t. Hence we can take z = (z1, z2, . . . , zr∗) as new
coordinates instead of ŷ. Thus, (3) takes the form

−(ϕ+
∂f̃t
∂t

) =

r∗∑
i=1

ziẏi.
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Using the Hadamard Lemma, we write this as

r∗∑
i=1

ziψi(x, z, ỹ, t) + φ(x, ỹ, t) +
∂f̃t
∂t

=

r∗∑
i=1

−ziẏi.

By taking ψi = −ẏi and ∂f̃t
∂t = −φ, we show that the homological equation is solvable.

The last step is to find f̃0. This can be done using the relation

−
∫ 1

0
φdt =

∫ 1

0

∂f̃t
∂t
dt = f̃1 − f̃0.

Note that the vector field v̇ =
r∗∑
i=1

ẏi
∂
∂yi

is defined in some neighborhood of the segment [0, 1] of

the t-axis in the space Rn × Rt, which is due to the zi vanishing on this segment.

Hence all the ft are quasi swallowtail equivalent. In particular, the function germ f1 is quasi
swallowtail equivalent to f0.

The second claim of the Lemma can be deduced directly as the family

θt : (x, y) 7→
(
x, Ŷt(x, ŷ), ỹ

)
preserves the projection (x, ŷ, ỹ) 7→ (x, ỹ). �

Lemma 2.14 Let f : (Rn, 0)→ R be a function germ with an isolated critical point at the origin,
and I0 its gradient ideal. Then f is quasi swallowtail equivalent for each t ∈ [0, 1] to the function
germ gt(w) = f(w) + th(w) with h(w) ∈ I2

0 , provided that the rank r of the second differential d2
0gt

of gt at the origin is constant.

Proof. At first we claim that if the rank of d2
0gt is constant then for different t the gradient

ideals It of gt coincide. Since the claim does not depend on the choice of local coordinates, we may

assume that the quadratic part of f at the origin has diagonal form
r∑
i=1

εiw
2
i , where εi = ±1 for

i = 1, . . . , r. We also set εi = 0 for i > r.

The quadratic part of gt at the origin is

r∑
i,j=1

(
εiδijw

2
i + 4thij(0)εiεjwiwj

)
=

r∑
i,j=1

Dijwiwj

where the hij , i, j = 1, . . . , n are the coefficients of the decomposition

h(w) =
n∑

i,j=1

hij(w)
∂f

∂wi

∂f

∂wj

of the function h, δij is the Kronecker symbol, and Dij = εiδij + 4tεiεjhij(0). We will assume here
that hij = hji.
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The r × r matrix with entries Dij is invertible for any t since the rank of d2
0gt is r. Reversing

signs of some of its rows, we see that the n× n matrix with the entries D̂ij = δij + 4tεjhij(0), for
i, j = 1, . . . , r and D̂ij = δij otherwise, is also invertible.

The differentiation

∂gt
∂wi

=
∂f

∂wi
+ t

n∑
k,j=1

(
2hkj

∂2f

∂wk∂wi
+
∂hkj
∂wi

∂f

∂wk

)
∂f

∂wj

implies that It ⊂ I0. This derivative can also be written as

∂gt
∂wi

=
n∑
j=1

(δij + 4tεihij(0) +Rji)
∂f

∂wj
=

n∑
j=1

(
D̂ji +Rji

) ∂f

∂wj
,

where the functions Rij vanish at w = 0. So in some neighborhood of the interval [0, 1] of the t-axis

the matrix
(
D̂ji +Rji

)
is invertible. This implies that I0 ⊂ It. Hence, It = I0.

Now the homological equation −∂gt
∂t =

n∑
i=1

∂gt
∂wi

Vi can be solved for the unknown functions Vi

which belong to the gradient ideal It for any t, since the left hand side belongs to the square of this
ideal. The phase flow of the vector field

∑
Vi

∂
∂wi

leaves all critical points of gt fixed. Hence all the
germs gt are quasi swallowtail equivalent. �

Lemmas 2.13 and 2.14 imply the following improved stabilization splitting.

Lemma 2.15 There is a non-negative integer s ≤ r − r∗ such that the function germ f(x, y) is

quasi swallowtail equivalent to
r∗+s∑
i=1
±y2

i + f̃(x, ỹ), where ỹ ∈ Rc−s and f̃ is a sum of a function

germ from M3
x,ỹ and a quadratic form in x only. For quasi swallowtail equivalent germs f , the

corresponding reduced germs f̃ are quasi swallowtail equivalent.

Proof. Due to Lemma 2.13, we can assume that the quadratic part of the function is

f2 =
r∗∑
i=1
±y2

i + x1

n−3∑
i=r∗+1

α1,iyi + x2

n−3∑
i=r∗+1

α2,iyi + x3

n−3∑
i=r∗+1

α3,iyi + g2(x) with constant coefficients

αj,i and the quadratic form g2 in x only. Suppose that some of these coefficients, for example

α1,r∗+1, is non-zero. Then, summing up the function f with δ
(
∂f
∂x1

)2
for sufficiently small δ gives a

new function g which (according to Lemma 2.14) is quasi swallowtail equivalent to f and contains
the term y2

r∗+1 with a non-zero coefficient. Therefore the rank of the restriction of g to the x = 0
subspace is larger than r∗. Repeating the procedure several times, if needed, we get a function germ
with a larger value of r∗ and without the xjy>r∗ terms. This is exactly the form required. �

3 CLASSIFICATION OF SIMPLE FUNCTIONS

Following [8], we call a function germ simple if its sufficiently small neighbourhood in the space
of all function germs contains only a finite number of quasi equivalence classes.

The quasi swallowtail classification of critical points outside the border Γswl coincides with the
standard right equivalence. Hence the standard classes Ak, Dk, E6, E7 and E8 form the list of
simple classes in this case. Also by definition, non-critical points are all equivalent wherever they
are. When the critical point of a function germ lies on Γswl then we distinguish the following cases:
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• If the base point is at a regular point of Γswl, then the quasi swallowtail equivalence coincides
with the quasi boundary equivalence. Hence, the list of simple quasi swallowtail classes in
this case is the same as that of simple quasi boundary classes [2].

• If the base point belongs to the self-interesting stratum of Γswl, then the quasi swallow-
tail equivalence coincides with the quasi corner equivalence. Hence, the list of simple quasi
swallowtail classes in this case is the same as that of simple quasi corner classes[3].

• If the base point belongs to the cusp stratum of Γswl, then the list of simple quasi swallowtail
classes is the same as that of simple quasi corner classes [4].

• The remaining case of a function germ having a swallowtail point is described by the following
theorem.

Theorem 3.1 Let a function germ f : (Rn, 0) → (R, 0), be simple with respect to the quasi swal-
lowtail equivalence. Then, either its quadratic part f2 is non-degenerate and hence f is quasi

swallowtail equivalent to Q2 : ±x2
1 ± x2

2 ± x2
3 +

n−3∑
i=1
±y2

i or f2 has corank 1 in which case f is stably

quasi swallowtail equivalent to one of the following simple classes:

Notation Normal form Restrictions Codimension

Qk ±x2
2 ± x2

3 ± xk1 k ≥ 3 k + 2

Tk ±x2
1 ± x2

3 ± xk2 k ≥ 3 k + 3

D3 ±x2
1 ± x2

2 + x3
3 7

N2,2,2,k ±(x1 + y2
1)2 ± (x2 + y2

1)2 ± (x3 + y2
1)2 ± yk1 k ≥ 3 k + 5

N3,2,2,4 ±(x1 + y3
1)2 ± (x2 + y2

1)2 ± (x3 + y2
1)2 ± y4

1 10

N3,3,2,4 ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x3 + y2
1)2 ± y4

1 11

N3,3,3,4 ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x3 + y3
1)2 ± y4

1 12

Remarks 3.2

1. Any germ f with the quadratic part of corank greater than 1 is non-simple.

2. Any germ of corank 1 is either simple (and hence quasi swallowtail equivalent to one of the
germs in the above theorem) or belongs to a subset of infinite codimension in the space of all
germs.

3. The fencing classes are stabilizations of the following:

Notation Class Restrictions Codimension

Q̃ ±(x1 + x2 + x3)2 ± x3
1 + αx3

3 α ∈ R \ {0} 8

D4 ±x2
2 ± (x1 + δx2

3)2 ± x4
3, δ ∈ R 8

N3,2,2,5 ±(x1 + y3
1)2 ± (x2 + y2

1)2 +±(x2 + y2
1)2 + βy5

1 β ∈ R \ {0} 11

N3,3,2,5 ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x2 + y2
1)2γy5

1 γ ∈ R \ {0} 12
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4. The graph of adjacencies in low codimension is as follows:

Q2 ← Q3 ← Q4 ← Q5 ← Q6 ← . . .

↑ ↑ ↑ ↑

T3 ← T4 ← T5 ← T6 ← . . .

↑

D3 ← D4

↑

N2,2,2,3 ← N2,2,2,4 ← N2,2,2,5 ← N2,2,2,6 ← . . .

↑ ↑

N3,2,2,4 ← N3,2,2,5

↑ ↑

N3,3,2,4 ← N3,3,2,5

↑

N3,3,3,4

Also, D3 ← Q̃.

To prove Theorem 3.1, we need the following auxiliary results.

Lemma 3.3 Let κ = n− r be the corank of the second differential d2
0f at the origin.

1. If κ = 0, then f is quasi swallowtail equivalent to
n−3∑
i=1
±y2

i + f2(x) + f3(x), where f2 is a

non-degenerate quadratic form and f3 ∈M3
x.

2. If κ = 1, then f is quasi swallowtail equivalent to either
n−3∑
i=1

±y2
i + f̃(x) with

rank
(
d2

0f̃
)

= 2 or to
n−3∑
i=2

±y2
i ± x2

1 ± x2
2 ± x2

3 + f3(x, y1), where f3(x, y1) ∈M3
x,y1 .

3. If κ ≥ 2, then f is non-simple.

Proof. Lemmas 2.12 and 2.15 provide the first two parts of Lemma 3.3.

For part 3, suppose that κ = 2. Then Lemma 2.15 yields that any function germ f(x, y) reduced
to one of the following forms:

0. F0 =

n−3∑
i=1

±y2
i + f2(x) + f3(x) where f3 ∈M3

x, and f2 is a quadratic form in x of rank one, or

1. F1 =

n−3∑
i=2

±y2
i + f2(x) + f3(x, ỹ1) where f3 ∈ M3

x,ỹ1
, ỹ1 ∈ R and f2 is a quadratic form in x of

rank two, or

2. F2 =

n−3∑
i=3

±y2
i + f2(x) + f3(x, ỹ) where f3 ∈ M3

x,ỹ, ỹ = (ỹ1, ỹ2) and f2 is a non-degenerate
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quadratic form in x.

Consider the germ F0. Then we may write F0 =

n−3∑
i=1

±y2
i ± (ax1 + bx2 + cx3)2 + f3 where

f3 ∈ M3
x, and a, b, c ∈ R (a, b, and c are not all zeros simultaneously). Suppose a 6= 0 and set

x̃1 = ax1 + bx2 + cx3. Hence we can take x̃1 as a new coordinate instead of x1. Thus, up to linear
transformation in x̃1, x2 and x3, we have

F0 ∼ F̃ =
n−3∑
i=1

±y2
i ± x̃2

1 + f̃3, f̃3 ∈M3
x̃1,x2,x3

.

The tangent space to the quasi swallowtail orbit at the germ F̃ in the new coordinates is

TQSWL
F̃

=

{
∂F̃

∂x̃1

[
4

a
(x̃1 − bx2 − cx3)h1 −

x2x3

2
h2 −

3x2
2

4
h3 +

∂F̃

∂x̃1
A1 +

3∑
i=2

∂F̃

∂xi
Ai

]

+
∂F̃

∂x2

[
3x2h1 +

(4

a
(x̃1 − bx2 − cx3)− x2

3

)
h2 − 2x2x3h3 +

∂F̃

∂x̃1
B1 +

3∑
i=2

∂F̃

∂xi
Bi

]

+
∂F̃

∂x3

[
2x3h1 + 3x2h2 +

(4

a
(x̃1 − bx2 − cx3)− x2

3

)
h3 +

∂F̃

∂x̃1
C1 +

3∑
i=2

∂F̃

∂xi
Ci

]}
.

Now, consider the principal part F̃0 = ±x̃1 of F̃ . The tangent space to the quasi swallowtail
orbit at F̃0 is

TQSWL
F̃0

=

{
±2x̃1

[
4

a
(x̃1 − bx2 − cx3)h1 −

x2x3

2
h2 −

3x2
2

4
h3 +

∂F̃

∂x̃1
A1 +

3∑
i=2

∂F̃

∂xi
Ai

]}
.

Thus, we get mod TQSWL
F̃0

: x̃2
1 ≡ 0, x̃1(−bx2−cx3) ≡ 0, x̃1x2x3 ≡ 0, and x̃1x

2
2 ≡ 0. Therefore,

we have Cx̃1,x2,x3/TQSWL
F̃0
'
{
αx̃1 + βx̃1x2 + ϕ(x2, x3) : α, β ∈ R, ϕ ∈ Cx2,x3

}
. According to

Remark 2.10, the germ F̃ is quasi swallowtail equivalent to

±x̃2
1 + g(x2, x3) with g ∈M3

x2,x3 . (∗)

Let H = ãx̃2
1 + a30x

3
2 + a21x

2
2x3 + a12x2x

2
3 + a03x

3
3 be the lowest quasi homogenous part of (∗)

with respect to the weights: wx̃1 = 3, wx2 = wx3 = 2. The tangent space to the quasi swallowtail
orbit at H is

TQSWLH =

{
∂H

∂x̃1

[
4

a
(x̃1 − bx2 − cx3)h1 −

x2x3

2
h2 −

3x2
2

4
h3 +

∂H

∂x̃1
A1 +

3∑
i=2

∂H

∂xi
Ai

]

+
∂H

∂x2

[
3x2h1 +

(4

a
(x̃1 − bx2 − cx3)− x2

3

)
h2 − 2x2x3h3 +

∂H

∂x̃1
B1 +

3∑
i=2

∂F̃

∂xi
Bi

]

+
∂H

∂x3

[
2x3h1 + 3x2h2 +

(4

a
(x̃1 − bx2 − cx3)− x2

3

)
h3 +

∂H

∂x̃1
C1 +

3∑
i=2

∂H

∂xi
Ci

]}
.
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The terms of H in TQSWLf2 are from[(4

a
(x̃1 − bx2 − cx3)

)∂H
∂x̃1

+ 3x2
∂H

∂x2
+ 2x3

∂H

∂x3

]
h1,[

− x2x3

2

∂H

∂x̃1
+
(4

a
(x̃1 − bx2 − cx3)− x2

3

)∂H
∂x2

+ 3x2
∂H

∂x3

]
h2,[

− 3x2
2

4

∂H

∂x̃1
− 2x2x3

∂H

∂x2
+
(4

a
(x̃1 − bx2 − cx3)− x2

3

)∂H
∂x3

]
h3,

and (∂H
∂x̃1

)2
A1.

These terms form a subspace of dimension at most 4. The dimension of the space L =
{

(ã, a30, a21, a12, a03)
}

of coefficients of H is 5 which is greater than the subspace dimension. This means that the germ
F0 is non-simple.

By similar arguments we can show that F0 is non-simple when a = 0 and b 6= 0 or a = b = 0
and c 6= 0.

In the next case we have F1 =

n−3∑
i=2

±y2
i ± (a1x1 + b1x2 + c1x3)2 + (a2x1 + b2x2 + c2x3)2 + f3,

where f3 ∈ Mx,ỹ1 , and ai, bi, ci ∈ R (a1, b1, c1 or a2, b2, c2 are not all zeros simultaneously). Note
that F1 deforms to

F̃1 =
n−3∑
i=2

±y2
i ± (a1x1 + b1x2 + c1x3)2 + (a2x1 + b2x2 + c2x3 + δỹ1)2 + f3, δ 6= 0.

According to Lemma 2.15, F̃1 is quasi swallowtail equivalent to

n−3∑
i=1

±y2
i +±(ax1 + bx2 + cx3)2 + f̃

with f̃ ∈ M3
x, which we have already shown to be non-simple. Similar argument yields that F2 is

adjacent to F1 and the result follows. �

Lemma 3.4 Let f : (R3, 0) 7→ (R, 0) be a function germ in local coordinates x1, x2 and x3, and with
a critical point at the origin. If the quadratic form f2 of f has rank 2 then f is quasi swallowtail
equivalent to either ±x2

2 ± x2
3 + ϕ1(x1) where ϕ1 ∈M3

x1 or ±x2
1 ± x2

3 + ϕ2(x2) where ϕ2 ∈M3
x2 or

±x2
1 ± x2

2 + x1ϕ3(x3) + ϕ4(x3) where ϕ3 ∈M2
x3 and ϕ4 ∈M3

x3.

Proof. The hierarchy of lines in T0R3 with respect to diffeomorphisms preserving the swallowtail
is

x1-axis← x2-axis← x3-axis.

Considering them as kernals of quadratic forms, we get the hierarchy of corank 2 forms

±x2
2 ± x2

3 ← ±x2
1 ± x2

3 ← ±x2
1 ± x2

2.

Consider the germ G = ±x2
2 ± x2

3 + g3(x), where g3 ∈ M3
x. Let G0 = ±x2

2 ± x2
3. The quasi

swallowtail tangent space at G0 is

TQSWLG0 =
{
± 2x2

[
3x2h1 + (4x1 − x2

3)h2 − 2x2x3h3 + x2B2 + x3B3

]
±2x3

[
2x3h1 + 3x2h2 + (4x1 − x2

3)h3 + x2C2 + x3C3

] }
.
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Thus, we get mod TQSWLG0 : x2
2 ≡ 0, x2

3 ≡ 0, x2x3 ≡ 0, x1x3 ≡ 0 and x1x2 ≡ 0. Hence,
Cx/TQSWLG0 ' Cx1 . According to Remark 2.10, the germ G is quasi swallowtail equivalent to
±x2

2 ± x2
3 + ϕ1(x1) with ϕ1 ∈M3

x1 .

Similarly, we can show that

• the germ H = ±x2
1 ± x2

3 + h3(x), where h3 ∈ M3
x is quasi swallowtail equivalent to ±x2

1 ±
x2

3 + ϕ2(x2) with ϕ2 ∈M3
x2 , and

• the germ P = ±x2
1±x2

2 + p3(x), where p3 ∈M3
x is quasi swallowtail equivalent to ±x2

1±x2
2 +

x1ϕ3(x3) + ϕ4(x3), where ϕ3 ∈M2
x3 and ϕ4 ∈M3

x3 . �

Lemma 3.5 A function germ f(x, y1) = ±x2
1 ± x2

2 ± x2
3 + f3(x, y1) with f3 ∈M3

x,y1 , is quasi

swallowtail equivalent to f̃(x, y1) = ±x2
1± x2

2± x2
3 + x1φ1(y1) + x2φ2(y1) + x3φ3(y1) + φ4(y1) where

φ1, φ2, φ3 ∈M2
y1 and φ4 ∈M3

y1.

Proof. Consider the principal part f0 = ±x2
1 ± x2

2 ± x2
3. Then, we get mod TQSWLf0 : x2

1 ≡ 0,
x2

2 ≡ 0, x2
3 ≡ 0, x1x2 ≡ 0, x1x3 ≡ 0 and x2x3 ≡ 0. Hence, we have

Cx,y1/TQSWLf0 ' {x1ϕ1(y1) + x2ϕ2(y1) + x3ϕ3(y1) + ϕ4(y1) : ϕ1, ϕ2, ϕ3, ϕ4 ∈ Cy1}. Due to the
constraint in the lemma on f3, the claim of the lemma follows. �

3.1 Proof of the Main Theorem 3.1

Lemmas 3.3, 3.4 and 3.5 yield that all simple quasi swallowtail singularities are among the following
germs:

1. G1 = ±x2
2 ± x2

3 + ϕ1(x1) where ϕ1 ∈M3
x1 .

2. G2 = ±x2
1 ± x2

3 + ϕ2(x2) where ϕ2 ∈M3
x2 .

3. G3 = ±x2
1 ± x2

2 + x1ϕ3(x3) + ϕ4(x3) where ϕ3 ∈M2
x3 and ϕ4 ∈M3

x3 .

4. G4 = ±x2
1 ± x2

2 ± x2
3 + x1φ1(y1) + x2φ2(y1) + x3φ3(y1) + φ4(y1) where φ1, φ2, φ3 ∈ M2

y1 and
φ4 ∈M3

y1 .

Using Lemma 2.9, one can easily prove the results below.

Consider the germ G1. Let ϕ1(x1) = akx
k
1 + ϕ̃1(x1), where ak 6= 0, k ≥ 3 and ϕ̃1 ∈ Mk+1

x1 .
Then, G1 is quasi swallowtail equivalent to the germ Qk : ±x2

2 ± x2
3 ± xk1.

Similarly the germ G2 can be reduced to one of the functions Tk : ±x2
1 ± x2

3 ± xk2, k ≥ 3.

Next, consider the germ G3. If ϕ4 contains a term ax3
3, a 6= 0, then G3 is quasi swallowtail

equivalent to D3 : ±x2
1 ± x2

2 + x3
3. Otherwise, in the most general case, G2 is quasi swallowtail

equivalent to a non-simple germ D4 : ±x2
2 ± (x1 + δx2

3)2 ± x4
3, δ ∈ R.

Finally, consider the germ G4 = ±x2
1±x2

2±x2
3 +x1(a2y

2
1 +a3y

3
1 +a4y

4
1 + . . . ) +x2(b2y

2
1 + b3y

3
1 +

b4y
4
1 + . . . ) + x3(c2y

2
1 + c3y

3
1 + c4y

4
1 + . . . ) + d3y

3
1 + d4y

4
1 + d5y

5
1 + . . .

• If d3 6= 0, then G4 is quasi swallowtail equivalent to ±x2
1±x2

2±x2
3 +y3

1, which can be written
equivalently as N2,2,2,3 : ±(x1 + y2

1)2 ± (x2 + y2
1)2 ± (x3 + y2

1)2 + y3
1.

• If d3 = 0, a2 6= 0 and d4 6= ±
a22
4 , thenG4 is quasi swallowtail equivalent to±x2

1±x2
2±x2

3+x1y
2
1±

y4
1, which is also quasi swallowtail equivalent toN2,2,2,4 : ±(x1+y2

1)2±(x2+y2
1)2±(x2+y2

1)2±y4
1.
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• If d3 = 0, a2 6= 0 and d4 = ±a22
4 , then we get the classes N2,2,2,k : ±(x1 + y2

1)2 ± (x2 + y2
1)2 ±

(x2 + y2
1)2 ± yk1 , where k ≥ 5

• If d3 = a2 = 0, b2 6= 0 and d4 6= ±
b22
4 , then G4 is quasi swallowtail equivalent to ±x2

1 ± x2
2 ±

x2
3 ± x2y

2
1 ± y4

1, which is equivalent to N3,2,2,4 : ±(x1 + y3
1)2 ± (x2 + y2

1)2 ± (x3 + y2
1)2 ± y4

1.

• If d3 = a2 = 0, b2 6= 0 and d4 = ± b22
4 , then we get a non-simple class

N3,2,2,5 : ±(x1 + y3
1)2 ± (x2 + y2

1)2 +±(x2 + y2
1)2 + αy5

1 with α ∈ R \ {0}.

• If d3 = a2 = b2 = 0 , and c4 6= 0 and d4 6= ±
c22
4 , then we get the class ±x2

1±x2
2±x2

3±x3y
2
1±y4

1,
or, equivalently, the N3,3,2,4 class: ±(x1 + y3

1)2 ± (x2 + y3
1)2 ± (x3 + y2

1)2 ± y4
1.

• If d3 = a2 = b2 = 0, c2 6= 0 and d4 = ± c22
4 , then we get a non-simple class

N3,3,2,5 : ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x2 + y2
1)2 + γy5

1 with γ ∈ R \ {0}.

• If d3 = a2 = b2 = c2 = 0 and d4 6= 0, then we get the class ±x2
1±x2

2±x2
3±y4

1 or, equivalently,
the N3,3,3,4 class: ±(x1 + y3

1)2 ± (x2 + y3
1)2 ± (x3 + y3

1)2 ± y4
1.

This finishes the proof of the theorem.

4 BIFURCATION DIAGRAMS ANDCAUSTICS OF SIMPLE QUASI SWAL-

LOWTAIL SINGULARITIES

A quasi swallowtail miniversal deformation of a function germ f : (Rn, 0) → (R, 0) may be
constructed in the standard way as

F (x, y, λ) = f(x, y) +

τ−1∑
i=0

λiei(x, y) , (4)

where e0, . . . , eτ−1 ∈ Cx,y project to a basis of Cx,y/TQSWLf . We will use the notation Fλ for
F |λ=const, so that F0 = f.

Definition 4.1 The quasi swallowtail bifurcation diagram of a function germ f is the set of all
points λ in the base Rτ of its quasi swallowtail miniversal deformation for which

• either the set {Fλ = 0} ⊂ Rn is singular,

• or a singularity of {Fλ = 0} is on Γswl.

Respectively, this diagram consists of two components, W1 and W2: W2 ⊂W1, dimWj = τ − j.

Now assume that e0 = 1 in (4), and all the other ei are from Mx,y. Following the standard
approach, we call the space Rτ−1 of the parameter λ1, . . . , λτ−1 the base of a truncated quasi
swallowtail miniversal deformation of f.

Definition 4.2 Consider the projection map Π : Rτ → Rτ−1 between the two bases, forgetting λ0.
The quasi swallowtail caustic of a function f is a hypersurface in the base Rτ−1 which is a union
of the Π-image Σ1 of the singular points of the set W1 ⊂ Rτ , and of the set Σ2 = Π(W2).

Remark 4.3 In terms of Section 5 below, the component W1 is the critical value set of the La-
grangian map of the manifold L, and W2 is the image of the border Γswl.
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The versal deformations listed below provide an explicit description of the bifurcation diagrams
and caustics of simple quasi swallowtail singularities.

Proposition 4.4 Quasi swallowtail miniversal deformations of simple quasi swallowtail classes are
as follows:

Singularity Miniversal deformation Restrictions

Qk ±x2
2 ± x2

3 ± xk1 +
k−1∑
i=0

λix
i
1 + λkx2 + λk+1x3 k ≥ 2

Tk ±x2
1 ± x2

3 ± xk2 +
k−1∑
i=0

λix
i
2 + λkx1 + λk+1x1 + λk+2x1x2 k ≥ 3

D3 ±x2
1 ± x2

2 ± x3
3 + λ0 + λ1x1 + λ2x2 + λ3x3 + λ4x

2
3 + λ5x1x3

+λ6x2x3

N2,2,2,k ±(x1 + y2
1)2 ± (x2 + y2

1)2 ± (x3 + y2
1)2 ± yk1 +

k−2∑
i=0

λiy
i
1 k ≥ 3

+λk−1x1 + λkx2 + λk+1x3 + λk+2x1y1 + λk+3x2y1 + λk+4x3y1.

N3,2,2,4 ±(x1 + y3
1)2 ± (x2 + y2

1)2 ± (x3 + y2
1)2 ± y4

1 + λ0 + λ1y1 + λ2y
2
1

+λ3x1 + λ4x2 + λ5x3 + λ6x1y1 + λ7x2y1 + λ8x3y1 + λ9x1y
2
1.

N3,3,2,4 ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x3 + y2
1)2 ± y4

1 + λ0 + λ1y1 + λ2y
2
1

+λ3x1 + λ4x2 + λ5x3 + λ6x1y1 + λ7x2y1 + λ8x3y1 + λ9x1y
2
1

+λ10x2y
2
1.

N3,3,3,4 ±(x1 + y3
1)2 ± (x2 + y3

1)2 ± (x3 + y3
1)2 ± y4

1λ0 + λ1y1 + λ2y
2
1

+λ3x1 + λ4x2 + λ5x3 + λ6x1y1 + λ7x2y1 + λ8x3y1 + λ9x1y
2
1

+λ10x2y
2
1 + +λ11x3y

2
1.

All simple quasi swallowtail singularities are the Ak singularities with respect to the standard
right equivalence. So, the first component of the quasi swallowtail bifurcation diagram of a simple
quasi swallowtail function is a product of a generalized swallowtail and Rτ−k. A similar observation
is valid for the first components of the caustics. In particular, the bifurcation diagram of Q2 in
R4 is a smooth hypersurface and a swallowtail on it. The Q2 caustic in R3 is a union of a smooth
surface and a swallowtail.

5 APPLICATION TO LAGRANGIAN BORDER SINGULARITIES

Standard notions and basic definitions concerning Lagrangian singularities can be found in [8].

Singularities of Lagrangian projections (mappings) are essentially the singularities of their gen-
erating families treated as families of functions depending on parameters and considered up to the
right equivalence depending on parameters and addition of functions in parameters. In particular,
the caustic Σ(L) of a Lagrangian projection of a Lagrangian submanifold L coincides with the set
of values of the parameters λ of the generating family F (w, λ) for which the family member Fλ has
a non-Morse critical point.
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Stability of a Lagrangian projection with respect to symplectomorphisms preserving the fibration
structure corresponds to the versality of the generating family with respect to the R+-equivalence
group.

Consider the standard symplectic space M = T ∗Rn with coordinates q on the base Rn and dual
coordinates p on the fibers of the Lagrangian projection π : T ∗Rn → Rn.

Locally any Lagrangian submanifold Ln in an ambient symplectic space M is determined by a
generating family of functions F (w, q) in variables w ∈ Rm and parameters q ∈ Rn according to
the standard formula:

L =

{
(p, q) ∈ Rn × Rn : ∃w ∈ Rm,

∂F

∂wi
= 0, p =

∂F

∂q

}
,

provided that the Morse non-degeneracy condition
[
the matrix

(
∂2F

∂wi∂wj

∂2F
∂wi∂qj

)
has rank n

]
holds.

The condition guarantees L being a smooth manifold.

Definition 5.1 [8] Two family germs Fi(w, q), w ∈ Rm, q ∈ Rn, i = 1, 2, at the origin are called
R+-equivalent if there exists a diffeomorphism Φ : (w, q) 7→ (W (w, q), Q(q)) and a smooth function
Θ of the parameters q such that F2(w, q) = (F1 ◦ Φ)(w, q) + Θ(q).

Following applications of quasi boundary, quasi corner and quasi cusp equivalence relations
considered in [2, 3, 4], we introduce

Definition 5.2 [4] A pair (L,Γ) consisting of a Lagrangian submanifold Ln in an ambient symplec-
tic space M and an (n− 1)-dimensional isotropic variety Γ ⊂ L is called a Lagrangian submanifold
with a border Γ.

Definition 5.3 [4] Lagrangian projections of two Lagrangian submanifolds with borders (Li,Γi),
i = 1, 2, are Lagrange equivalent if there exists a symplectomorphism of the ambient space M which
preserves the π-bundle structure and sends one pair to the other.

The notions of stability and simplicity of Lagrangian submanifolds with borders with respect to
this Lagrangian equivalence are straightforward.

Up to a Lagrange equivalence we may assume that in a vicinity of a base point the tangent space
to L has a regular projection onto the fiber of π and the coordinates p can be taken as coordinates
w on the fibers of the source space of the generating family.

Generating family is defined up to R+-equivalence. So having two Lagrange equivalent pairs
(Li,Γi) we can choose a generating family for one of them in coordinates p, q and the generating
family for the second pair in transformed coordinates P̃ (p) so that the projection of Γ1 to p-
coordinate subspace coincides with the projection of Γ2 to the P̃ -coordinate subspace.

Assume that the Γi are borders, i = 1, 2. Rename the coordinates p by w and q by λ. Let
gi(w) = 0 be the equation of the border Γi, i = 1, 2.

Now we have generating families Fi(w, λ) for both submanifolds such that the critical points of
Fi with respect to variables w at the set {gi(w) = 0} correspond to the border Γi.

Hence, the Lagrange equivalence of pairs (Li,Γi), i = 1, 2, gives rise to an equivalence of
the generating families Fi which is a pseudo border equivalence and addition with a function in
parameters.

Moreover the following holds.
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Proposition 5.4 Let (Lt,Γt), t ∈ [0, 1], be a family of equivalent pairs of Lagrangian submanifolds
with a cylinder over a swallowtail stratum. Then the respective generating families are quasi
swallowtail equivalent up to addition of functions depending on parameters.

The above equivalence of generating families will be called the quasi swallowtail +-equivalence.

The last proposition and the classification of simple quasi swallowtail singularities imply the
following theorem.

Theorem 5.5 1. A germ (L,Γ) is stable if and only if its arbitrary generating family is quasi
border +-versal, that is, versal with respect to the quasi border equivalence and addition of
functions in parameters.

2. Any stable and simple projection of a Lagrangian submanifold with a cylinder over a swallow-
tail stratum is symplectically equivalent to the projection determined by a generating family
which is a quasi swallowtail +-versal deformation of one of the classes from Theorem 3.1.

Proof. Suppose that a germ (L0,Γ0) is stable. Then any germ (L̃, Γ̃) close (L0,Γ0) is Lagrange
equivalent to it.

Assume we have a family (Lt,Γt) of deformations of (L0,Γ0), with t ∈ [0, 1]. Also assume
that there is a family of diffeomorphism θt : T ∗Rn → T ∗Rn which preserves Lagrange fibration
π : T ∗Rn → Rn, (p, q) 7→ q and the standard symplectic form ω, and maps (Lt,Γt) to (L0,Γ0).

Consider families depending on t of respective generating families Gt(w, q) of (Lt,Γt) with t ∈
[0, 1] and G0 being a generating family of the pair (L0,Γ0). By Proposition 5.4, all the Gt are quasi
swallowtail +-equivalent. Thus, there exist a family of diffeomorphisms Φt : (w, q) 7→ (w̃t(w, q), Qt(q))
and a family Ψt of smooth functions of the parameters q such that: Gt◦Φt = G0 +Ψt, and the criti-
cal points sets

{
∂Gt
∂w = 0

}
correspond to the Lagrangian submanifolds Lt. This yields, in particular,

that G0 is versal with respect to quasi border +-equivalence.

By reversing the previous argument we prove the converse claim.

The second part of the theorem is a consequence of the classification of function germs with
respect to the quasi swallowtail equivalence. �

6 CONCLUSION

The further study of similar non-standard equivalence relation and its comparison with standard one
will give extra information on the nature of singularity classes in various optimization problems and
problems in variations theory with constraints, on the adjacencies of respective singularity classes
and on their invariants.
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