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Abstract: In this paper, the product of Euler means is taken up to study the double summability of Fourier 

series and its allied series. We established two new theorems on   1,1, EE  product summability of Fourier 

series and its conjugate Fourier series.   
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1. DEFINITION AND NOTATION 

Let  xf be a 2 periodic function and Lebesgue integrable over   , . The Fourier 

series of  xf  at any point x  is given by  
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The conjugate series of Fourier series is given by  
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We shall use the following notation, 
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 , where  denotes the greatest integer not greater that 

t

1

 

Let 


0n

nu be a given infinite series with sequence of its 
thn partial sum ns . The  1,E  transform is 

defined as the
thn partial sum of  1,E

 
summability and is given by    
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, then  

the infinite series 


0n

nu is summable to the definite no. s  by   1,1, EE  summability method if 
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2. INTRODUCTION 

In the field of summability of Fourier series & its allied series, the product summability   XqE, , 

  qEX ,  
or qE,  have been studied by a number of researchers like, Mohanty, R. and Mohapatra, 

S. (1968), Kwee, B. (1972), 
2
Chandra, P. (1977), 

1
Chandra, P. and Dikshit, G.D. (1981), Sachan, M.P. 

(1983),  Bhagwat, Purnima (1987), Nigam, H.K. and Sharma, Ajay (2006), Lal, S., Singh, H.P., 

Tiwari, 
8
Sandeep kumar, and Bariwal, Chandrashekhar (2010), 

3
Dhakal, Binod Prasad (2011), 

Rathore, H.L. and Shrivastava, U.K. (2012), Nigam, H.K. and Sharma, K. (2012,2013), Sinha, 

Santosh kumar & Shrivastava, U.K. (2014), Mishra, V.N. and Sonavane, Vaishali (2015) and many 

more, under various type of criteria & conditions. After this, so many results established on double 

factorable summability of double Fourier series, the methods of    1,1,,1,1, HC &  nm qpN ,, .But 

yet, no result found on double Euler summability of Fourier series & its allied series. Under a general 

condition, hear we have established two new theorems on   1,1, EE  product summability of Fourier 

series and its Conjugate series. 

 

3. MAIN THEOREM 

Theorem 1: Let  np be a positive, monotonic, non-increasing sequence of real constants such that   
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where  t is positive, non-increasing function of t  and   n , as n . Then the Fourier 

series (1.1) is summable   1,1, EE  to  xf  at pt xt  . 

Theorem 2: Let  np be a positive, monotonic, non-increasing sequence of real constants such that           
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where  t is positive, non-increasing function of t , then the Conjugate Fourier series (1.2) is 

summable to  
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at every pt, where this integral exists. 

 

4. LEMMAS 

Lemma 1:  For nt 10   ;   22sin tt  ; tnnt sinsin  ; 1cos nt  

       Proof:  
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Lemma 2: For  tn1  ;   22sin tt  ;  

      Proof:
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Lemma 3: For nt 10  ,   22sin tt  ; 1cos nt  

      Proof:  
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Lemma 4:  For  tn1 ,   22sin tt   

     Proof:   
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5. PROOF 

Proof of Theorem 1: We have to show, under the hypothesis of the theorem, that 
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Using second-mean value theorem for the integral in the second term as  n is monotonic 
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Finally, 
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By using Riemann-Lebesgue theorem and regularity condition of summability. 

Combining (5.2), (5.3) and (5.4) we have 
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This completes the proof of theorem 1. 

Proof of Theorem 2: 
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Using second-mean value theorem for the integral in the second term as  n is monotonic 
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Finally, 
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By using Riemann-Lebesgue theorem and regularity condition of summability. 

Combining (5.6), (5.7) and (5.8) we have 
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This completes the proof of theorem 2. 

 

6. CONCLUSION 

In the field of summability theory, various results pertaining  1,E ,  XE 1,  and  1,EX  

summabilities of Fourier series as well as its Allied series have been reviewed. In future, the present 

work can be extended to establish new results under certain conditions. 
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