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Abstract: In this paper, the product of Euler means is taken up to study the double summability of Fourier 

series and its allied series. We established two new theorems on   1,1, EE  product summability of Fourier 

series and its conjugate Fourier series.   
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1. DEFINITION AND NOTATION 

Let  xf be a 2 periodic function and Lebesgue integrable over   , . The Fourier 

series of  xf  at any point x  is given by  
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The conjugate series of Fourier series is given by  
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We shall use the following notation, 
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Let 


0n

nu be a given infinite series with sequence of its 
thn partial sum ns . The  1,E  transform is 

defined as the
thn partial sum of  1,E

 
summability and is given by    
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2. INTRODUCTION 

In the field of summability of Fourier series & its allied series, the product summability   XqE, , 

  qEX ,  
or qE,  have been studied by a number of researchers like, Mohanty, R. and Mohapatra, 

S. (1968), Kwee, B. (1972), 
2
Chandra, P. (1977), 

1
Chandra, P. and Dikshit, G.D. (1981), Sachan, M.P. 

(1983),  Bhagwat, Purnima (1987), Nigam, H.K. and Sharma, Ajay (2006), Lal, S., Singh, H.P., 

Tiwari, 
8
Sandeep kumar, and Bariwal, Chandrashekhar (2010), 

3
Dhakal, Binod Prasad (2011), 

Rathore, H.L. and Shrivastava, U.K. (2012), Nigam, H.K. and Sharma, K. (2012,2013), Sinha, 

Santosh kumar & Shrivastava, U.K. (2014), Mishra, V.N. and Sonavane, Vaishali (2015) and many 

more, under various type of criteria & conditions. After this, so many results established on double 

factorable summability of double Fourier series, the methods of    1,1,,1,1, HC &  nm qpN ,, .But 

yet, no result found on double Euler summability of Fourier series & its allied series. Under a general 

condition, hear we have established two new theorems on   1,1, EE  product summability of Fourier 

series and its Conjugate series. 

 

3. MAIN THEOREM 

Theorem 1: Let  np be a positive, monotonic, non-increasing sequence of real constants such that   
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where  t is positive, non-increasing function of t  and   n , as n . Then the Fourier 

series (1.1) is summable   1,1, EE  to  xf  at pt xt  . 

Theorem 2: Let  np be a positive, monotonic, non-increasing sequence of real constants such that           
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where  t is positive, non-increasing function of t , then the Conjugate Fourier series (1.2) is 

summable to  
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at every pt, where this integral exists. 

 

4. LEMMAS 

Lemma 1:  For nt 10   ;   22sin tt  ; tnnt sinsin  ; 1cos nt  
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Lemma 2: For  tn1  ;   22sin tt  ;  
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Lemma 3: For nt 10  ,   22sin tt  ; 1cos nt  
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Using second-mean value theorem for the integral in the second term as  n is monotonic 
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Finally, 
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By using Riemann-Lebesgue theorem and regularity condition of summability. 

Combining (5.2), (5.3) and (5.4) we have 
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This completes the proof of theorem 1. 

Proof of Theorem 2: 
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Using second-mean value theorem for the integral in the second term as  n is monotonic 

                                        11 oo   
, as n  

                                      1o  
, as n                                                                                    (5.7)   

Finally, 
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By using Riemann-Lebesgue theorem and regularity condition of summability. 

Combining (5.6), (5.7) and (5.8) we have 
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This completes the proof of theorem 2. 

 

6. CONCLUSION 

In the field of summability theory, various results pertaining  1,E ,  XE 1,  and  1,EX  

summabilities of Fourier series as well as its Allied series have been reviewed. In future, the present 

work can be extended to establish new results under certain conditions. 
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