International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 7, July 2014, PP 649-655
ISSN 2347-307X (Print) & ISSN 2347-3142 (Online)
www.arcjournals.org

A Few e-labeling Graphs

T. Tharmaraj

Department of Mathematics Udaya School of Engineering, Vellamodi, Tamil Nadu, India trajtr@gmail.com

P.B. Sarasija

Department of Mathematics, Noorul Islam University, Kumaracoil, Tamil Nadu, India sijavk@gmail.com

Abstract: Let G(V,E) be a graph of order n and size m. A e-labeling of G is a one-to-one function $f:V(G) \to \{0,1,2,...,m\}$ that induces a labeling $f^+:E(G) \to \{1,2,3,...,m^2\}$ of the edges of G defined by $f^+(uv) = |[f(u)]^2 - [f(v)]^2|$ for every edge uv of G. The value of a e-labeling is denoted by e-val $(f) = \sum_{uv \in E} f^+(uv)$. The maximum value of a e-labeling of G is defined by e-val(f): f is a e-labeling of G, while the minimum value of a e-labeling of G is defined by e-val(f): f is a e-labeling of G. In this paper, we investigate the e-val(G) and e-val(G) of (G) of (G)

Keywords: *e-labeling* , *maximum value* , *minimum value*.

Mathematical subject classification (2010) 05C78

1. Introduction

All graphs in this paper are finite, simple and undirected graphs. Let G(V,E) be a graph with p = |V(G)| vertices and q = |E(G)| edges. Graph labeling, where the vertices are assigned values subject to certain conditions. By graph labeling we mean the vertices and edges are assigned real values or subsets of a set are subject to certain conditions. A detailed survey of graph labeling can be found in [3]. Terms not defined here are used in the sense of Harary in [2]. The concept of e-labeling was first introduced in [5] and some results on e-labeling of graphs are discussed in [5]. In this paper we investigate some more graphs for e-labeling. of We use the following definitions in the subsequent sections.

Definition 1.1[5]: Let G(V, E) be a graph of order n and size m. A e-labeling of G is a one-to-one function $f:V(G) \to \{0,1,...,m\}$ that induces a labeling $f^+: E(G) \to \{1,2,3,...,m^2\}$ of the edges of G defined by $f^+(uv) = |[f(u)]^2 - [f(v)]^2|$ for every edge uv of G. The value of a e-labeling is denoted by e-val $(f) = \sum_{uv \in E} f^+(uv)$. The maximum value of a e-labeling of G is defined by e-val $(f) = \max\{e\text{-val}(f): f \text{ is a e-labeling of } G\}$, while the minimum value of a e-labeling of G is defined by e-val $(f) = \min\{e\text{-val}(f): f \text{ is a e-labeling of } G\}$.

Definition 1.2 [1]: For a graph G of order n and size m, a γ -labeling of G is a one-to-one function $f:V(G) \to \{0,1,...,m\}$ that induces a labeling $f':E(G) \to \{1,2,3,...,m\}$ of the edges of G defined by f'(uv) = |[f(u)] - [f(v)]| for each edge G of order G and size G and size G avalued enoted by G and defined by

©ARC Page | 649

 $\operatorname{val}(f) = \sum_{uv \in E} f'(uv) \text{ . The maximum value of a } \gamma\text{-labeling of graph } G \text{ is defined by } \\ \operatorname{val}_{\max}(G) = \max\{ \operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G \} \text{ , while the minimum value of a } \gamma\text{-labeling of } G \text{ is defined by } \operatorname{val}_{\min}(G) = \min\{ \operatorname{val}(f) : f \text{ is a } \gamma\text{-labeling of } G \} \text{ . }$

Definition 1.3.[3]: The fan $f_n (n \ge 2)$ is obtained by joining all nodes of P_n to a further node called the center and contains n+1 nodes and 2n-1 edges.

Definition 1.4.[3]: The n-bistar graph $B_{n,n}$ is the graph obtained from two copies of $K_{1,n}$ by joining the vertices of maximum degree by an edge.

2. MAIN RESULTS

Theorem 2.1: Let f_{n-1} be a fan graph. For every even integer $n \ge 4$,

e-val_{min}
$$(f_{n-1}) = \frac{n^3 + 3n^2 - 8n + 4}{4}$$
.

Proof: Let f_{n-1} be a fan graph. Let $V(f_{n-1}) = \{v_i : 1 \le i \le n \}$.

Let
$$E(f_{n-1}) = \{v_i v_{i+1} : 1 \le i \le n-2 ; v_i v_n : 1 \le i \le n-1 \}$$
. Then size $m = 2n-3$.

Define a e-labeling f from $V(f_{n-1})$ to $\{0,1,2,...,2n-3\}$ by $f(v_i) = i-1$ if $1 \le i \le \frac{n}{2}$;

$$f(v_{\frac{(n-1+2i)}{2}}) = \frac{(n+2i)}{2}$$
 if $1 \le i \le \frac{(n-2)}{2}$ and $f(v_n) = \frac{n}{2}$. Let f^+ be the induced edge

labeling of f . The induced edge labels of f_{n-1} by f^+ are as follows: $f^+(v_{\frac{n}{2}}v_{\frac{(n+2)}{2}})=2n$;

$$f^{+}(v_{i}v_{i+1}) = 2i - 1 \quad \text{if } 1 \le i \le \frac{(n-2)}{2}; \ f^{+}(v_{\frac{(n+2i)}{2}}v_{\frac{(n+2+2i)}{2}}) = n + 1 + 2i \quad \text{if } 1 \le i \le \frac{(n-4)}{2};$$

$$f^+(v_iv_n) = \frac{(n-2+2i)(n+2-2i)}{4}$$
 if $1 \le i \le \frac{n}{2}$;

$$f^+(v_{\frac{(n+2i)}{2}}v_n) = (n+i)i$$
 if $1 \le i \le \frac{(n-2)}{2}$.

Then e-val_{min}
$$(f_{n-1}) = \sum_{i=1}^{\left(\frac{n-2}{2}\right)} (2i-1) + \sum_{i=1}^{\left(\frac{n-4}{2}\right)} (n+1+i) + \sum_{i=1}^{\left(\frac{n}{2}\right)} \frac{(n-2+2i)(n+2-2i)}{4} + \sum_{i=1}^{\left(\frac{n-2}{2}\right)} (n+i)i + 2n = \frac{n^3 + 3n^2 - 8n + 4}{4}.$$

Theorem 2.2: Let f_{n-1} be a fan graph. For every odd integer $n \ge 5$,

e-val_{min}
$$(f_{n-1}) = \frac{n^3 + 3n^2 - 9n + 5}{4}$$
.

Proof: Let f_{n-1} be a fan graph. Let $V(f_{n-1}) = \{v_i : 1 \le i \le n \}$.

Let
$$E(f_{n-1}) = \{v_i v_{i+1} : 1 \le i \le n-2 : v_i v_n : 1 \le i \le n-1 \}$$
. Then size $m = 2n-3$.

Define a e-labeling f from $V(f_{n-1})$ to $\{0,1,2,...,2n-3\}$ by $f(v_i) = i-1$ if $1 \le i \le \frac{(n-1)}{2}$;

$$f(v_{\frac{(n-1+2i)}{2}}) = \frac{(n-1+2i)}{2}$$
 if $1 \le i \le \frac{(n-1)}{2}$ and $f(v_n) = \frac{(n-1)}{2}$.

Let f^+ be the induced edge labeling of f . The induced edge labels of $f_{{\scriptscriptstyle n-1}}$ by f^+ are as

follows:
$$f^+(v_{\frac{(n-1)}{2}}v_{\frac{(n+1)}{2}}) = 2(n-1)$$
; $f^+(v_iv_{i+1}) = 2i-1$ if $1 \le i \le \frac{(n-3)}{2}$;

$$f^+(v_{\frac{(n-1+2i)}{2}}v_{\frac{(n+1+2i)}{2}}) = n+2i \text{ if } 1 \le i \le \frac{(n-3)}{2};$$

$$f^+(v_iv_n) = \frac{(n-3+2i)(n+1-2i)}{4}$$
 if $1 \le i \le \frac{(n-1)}{2}$;

$$f^+(v_{\frac{(n-1+2i)}{2}}v_n) = (n-1+i)i$$
 if $1 \le i \le \frac{(n-1)}{2}$.

Then e-val_{min}
$$(f_{n-1}) = \sum_{i=1}^{\left(\frac{n-3}{2}\right)} (2i-1) + \sum_{i=1}^{\left(\frac{n-3}{2}\right)} (n+i) + \sum_{i=1}^{\left(\frac{n-1}{2}\right)} \frac{(n-3+2i)(n+1-2i)}{4}$$

$$+\sum_{i=1}^{\left(\frac{n-1}{2}\right)} (n-1+i)i+2(n-1) = \frac{n^3+3n^2-9n+5}{4}.$$

Example 2.3: The minimum e-labeling of fan f_7 is shown in the Figure-1.

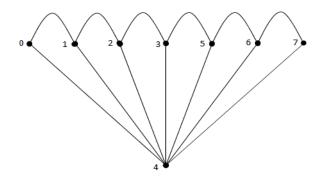


Figure-1

Remark:2.4: From the above example 2.3, observed that e-val_{min}(f_7) =161.

Theorem 2.5: Let f_{n-1} be a fan graph. For every even integer $n \ge 4$,

$$e-val_{max}(f_{n-1}) = \frac{65n^3 - 285n^2 - 418n - 204}{12}.$$

Proof: Let f_{n-1} be a fan graph. Let $V(f_{n-1}) = \{v_i : 1 \le i \le n \}$.

Let
$$E(f_{n-1}) = \{v_i v_{i+1} : 1 \le i \le n-2 : v_i v_n : 1 \le i \le n-1 \}$$
. Then size $m = 2n-3$.

Define a e-labeling f from $V(f_{n-1})$ to $\{0,1,2,...,2n-3\}$ by $f(v_{2i-1})=i-1$ if $1 \le i \le \frac{n}{2}$;

$$f(v_{2i}) = 2n - 3 - i$$
 if $1 \le i \le \frac{(n-2)}{2}$ and $f(v_n) = 2n - 3$. Let f^+ be the induced edge

labeling of f . The induced edge labels of f_{n-1} by f^+ are as follows:

$$f^+(v_{2i-1}v_{2i}) = (2n-4)(2n-2-2i)$$
 if $1 \le i \le \frac{(n-2)}{2}$;

$$f^+(v_{2i}v_{2i+1}) = (2n-3)(2n-3-2i)$$
 if $1 \le i \le \frac{(n-2)}{2}$;

$$f^+(v_{2i-1}v_n) = (2n-4+2i)(2n-2-i)$$
 if $1 \le i \le \frac{n}{2}$;

$$f^+(v_{2i}v_n) = (4n-6-i)i$$
 if $1 \le i \le \frac{(n-2)}{2}$

Then e-val_{max}
$$(f_{n-1}) = \sum_{i=1}^{\left(\frac{n-2}{2}\right)} (2n-4)(2n-2-2i) + \sum_{i=1}^{\left(\frac{n-2}{2}\right)} (2n-3)(2n-3-2i)$$

$$+ \sum_{i=1}^{\left(\frac{n}{2}\right)} (2n-4+2i)(2n-2-i) + \sum_{i=1}^{\left(\frac{n-2}{2}\right)} (4n-6-i)i$$

$$= \frac{65n^3 - 285n^2 - 418n - 204}{12}.$$

Theorem 2.6: Let f_{n-1} be a fan graph. For every odd integer $n \ge 5$,

$$e-val_{max}(f_{n-1}) = \frac{65n^3 - 297n^2 - 457n - 237}{12}.$$

Proof: Let f_{n-1} be a fan graph. Let $V(f_{n-1}) = \{v_i : 1 \le i \le n \}$.

Let
$$E(f_{n-1}) = \{v_i v_{i+1} : 1 \le i \le n-2 ; v_i v_n : 1 \le i \le n-1 \}$$
. Then size $m = 2n-3$.

Define a e-labeling f from $V(f_{n-1})$ to $\{0,1,2,...,2n-3\}$ by $f(v_n)=2n-3$;

$$f(v_{2i-1}) = i-1$$
 if $1 \le i \le \frac{(n-1)}{2}$ and $f(v_{2i}) = 2n-3-i$ if $1 \le i \le \frac{(n-1)}{2}$.

Let $f^{\scriptscriptstyle +}$ be the induced edge labeling of f .

The induced edge labels of f_{n-1} by $f^{\scriptscriptstyle +}$ are as follows:

$$f^+(v_{2i-1}v_{2i}) = (2n-4)(2n-2-2i)$$
 if $1 \le i \le \frac{(n-1)}{2}$;

$$f^+(v_{2i}v_{2i+1}) = (2n-3)(2n-3-2i)$$
 if $1 \le i \le \frac{(n-3)}{2}$;

$$f^+(v_{2i-1}v_n) = (2n-4+2i)(2n-2-i)$$
 if $1 \le i \le \frac{(n-1)}{2}$;

$$f^+(v_{2i}v_n) = (4n-6-i)i$$
 if $1 \le i \le \frac{(n-1)}{2}$.

Then e-val_{max}
$$(f_{n-1}) = \sum_{i=1}^{\left(\frac{n-1}{2}\right)} (2n-4)(2n-2-2i) + \sum_{i=1}^{\left(\frac{n-3}{2}\right)} (2n-3)(2n-3-2i)$$

$$+ \sum_{i=1}^{\left(\frac{n-1}{2}\right)} (2n-4+2i)(2n-2-i) + \sum_{i=1}^{\left(\frac{n-1}{2}\right)} (4n-6-i)i$$

$$= \frac{65n^3 - 297n^2 - 457n - 237}{12}.$$

Example 2.7: The maximum e-labeling of fan f_6 is shown in the Figure-2.

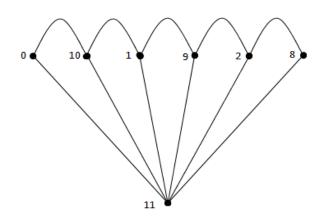


Figure-2

Remark:2.8: From the above example 2.7, observed that e-val_{max}(f_6) =892.

Theorem 2.9: Let $B_{n-1,n-1}$ be a (n-1)-bistar. Then for every integer $n \ge 3$,

$$e-val_{min}(B_{n-1,n-1}) = 2n^3 - 2n^2 + 3n - 1.$$

Proof: Let $B_{n-1,n-1}$ be a (n-1)-bistar. Let $V(B_{n-1,n-1}) = \{u_i, v_i : 1 \le i \le n\}$.

Let
$$E(B_{n-1,n-1}) = \{u_i u_n : 1 \le i \le n-1 ; v_i v_n : 1 \le i \le n-1 ; u_n v_n \}$$
. Then size $m = 2n-1$.

Define a e-labeling f from $V(B_{n-1,n-1})$ to $\{0,1,2,...,2n-1\}$ by $f(u_i)=i-1$ if $1 \le i \le n$;

$$f(v_i) = n + i$$
 if $1 \le i \le (n-1)$; $f(v_n) = n$. Let f^+ be the induced edge labeling of f .

The induced edge labels of f_{n-1} by f^+ are as follows: $f^+(u_nv_n) = 2n-1$;

$$f^+(u_iu_n) = (n-2+i)(n-i)$$
 if $1 \le i \le (n-1)$; $f^+(v_iv_n) = (2n+i)i$ if $1 \le i \le (n-1)$.

Then e-val_{min}
$$(B_{n-1,n-1}) = \sum_{i=1}^{(n-1)} (n-2+i)(n-i) + \sum_{i=1}^{(n-1)} (2n+i)i + (2n-1)$$

= $2n^3 - 2n^2 + 3n - 1$.

Example 2.10: The minimum e-labeling of 4-bistar $B_{4,4}$ is shown in the Figure-3.

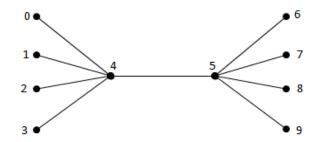


Figure-3

Remark:2.11: From the above example 2.10, observed that e-val_{min}($B_{4.4}$) =189.

Theorem 2.12: Let $B_{n-1,n-1}$ be a (n-1)-bistar. Then for every integer $n \ge 3$,

e-val_{max}
$$(B_{n-1,n-1}) = \frac{16n^3 - 30n^2 + 26n - 9}{3}$$
.

Proof: Let $B_{n-1,n-1}$ be a (n-1)-bistar. Let $V(B_{n-1,n-1}) = \{u_i, v_i : 1 \le i \le n\}$.

Let
$$E(B_{n-1,n-1}) = \{u_i u_n : 1 \le i \le n-1 ; v_i v_n : 1 \le i \le n-1 ; u_n v_n \}$$
.

Then size m = 2n - 1. Define a e-labeling f from $V(B_{n-1,n-1})$ to $\{0,1,2,...,2n-1\}$ by $f(u_i) = 2i - 2$ if $1 \le i \le n$; $f(v_i) = 2i - 1$ if $1 \le i \le n$.

Let f^+ be the induced edge labeling of f.

The induced edge labels of f_{n-1} by f^+ are as follows:

$$f^+(u_n v_n) = 4n - 3;$$

 $f^+(u_i u_n) = 4(n - 2 + i)(n - i) \text{ if } 1 \le i \le (n - 1);$

$$f^+(v_iv_n) = 4(n-1+i)(n-i)$$
 if $1 \le i \le (n-1)$.

Then e-val_{max}
$$(B_{n-1,n-1}) = \sum_{i=1}^{(n-1)} 4(n-2+i)(n-i) + \sum_{i=1}^{(n-1)} 4(n-1+i)(n-i) + (4n-3)$$

$$=\frac{16n^3-30n^2+26n-9}{3}.$$

Example 2.13: The maximum e-labeling of 5-bistar $B_{5,5}$ is shown in the Figure-4.

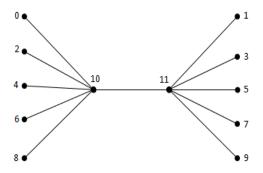


Figure-4

Remark: 2.14: From the above example 2.13, observed that e-val_{max}($B_{5.5}$) =841.

3. CONCLUSION

In this paper, we have investigated the maximum and the minimum values of e-labeling of fan and n-bistar graphs. We have planned to investigate the maximum and the minimum values of e-labeling of cycle related graphs in the next paper.

REFERENCES

- [1] Chartrand.G, D.Erwin, Vander Jagt D.W and P.Zhang, γ-labeling of graphs, Buletin of ICA, 44, (2005), 51-68.
- [2] Frank Harrary, Graph Theory, Narosa publishing House, (2001).
- [3] J.A. Gallian, A dynamic survey of graph labeling, The Electronics journal of Combinatorics, 17: #DS6, (2011).
- [4] Indriati .D, On γ -Labeling of (n,t)-Kite Graph, Jurnal Matematika & Sains, Vol.16, No.3, (2011), 129-132.
- [5] T.Tharmaraj and P.B.Sarasija, On e-labeling of Graphs, International Journal of Scientific and Innovative Mathematical Research, Vol.2, No.6, (2014), 592-602.