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1. INTRODUCTION 
There is a comprehensive literature on the theory, applications and numerical methods of the 
fractional calculus. For a brief history we refer to our open access paper Trif [1] and references 
therein. We must remark that any algorithm using a discretization of a non-integer derivative has 
to take into account its non-local structure which imply, in general, high storage requirements and 
a great overall complexity of the algorithm. 

Our Matlab package Chebpack, see Trif [2], is based on the operational form of the Chebyshev 
spectral tau method and its main advantage is a unified approach for initial value problems, 
boundary value problems, eigenproblems, nonlocal problems for ordinary, fractional or 
distributed order differential equations. Chebpack assumes the representation of the unknown 
functions in truncated Chebyshev polynomials series 
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)(xyIf  is a smooth function then the above approximation is spectrally accurate, i.e. the 
approximation error decreases faster than any power of  when . If  is not 
smooth, as it often happens with the solutions of fractional differential equations, the 
approximation may require large values of n  as it can be seen in some examples in Trif [1]. 
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The aim of the presented paper is to extend the capabilities of Chebpack to spectrally approximate 
functions with algebraic singularities such that ,  where  is a well-
behaved function. The idea is to use the above Chebyshev spectral approximation only for the 
function 

)()( xzxxy q= 0≥q )(xz

z . 

The paper is structured as follows: in section 1 we describe the operational Chebyshev spectral 
method, in section 2 we give the discretization of the fractional integral operators by using the 
above idea and in section 3 we give numerical examples to illustrate the facilities of Chebpack for 
fractional calculus of functions with algebraic singularities. All the necessary Matlab code for 
reproducing the examples are now part of an updated version of Chebpack [2], in the folder 
Examples, subfolder Fractional differential equations. 
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A sufficiently well-behaved function  can be accurately approximated by its physical 

representation  of values of y  the given gridpoints 
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example at the Chebyshev points of the first or second kind 
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The function  can also be accurately approximated by its spectral representation )(xy
{ }1−nc

)(x
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 where  given by (1) is the unique polynomial obtained by 

interpolating  through the points 

)(1 xyn−

x . Of course, the Chebyshev polynomials are defined on 
 but any interval [ 1,1−=dom ] [ ]ba,dom =  can be shifted to [ ]1,1−  and we may use the shifted 

Chebyshev polynomials 
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The code [x,w]=pd(n,dom,kind) of Chebpack calculates the  Chebyshev points n x  of the 
corresponding kind on dom as a column vector and the n quadrature weights w

=a j 1

 as a row vector 
for the Clenshaw-Curtis quadrature formula 
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The fast conversion between the spectral representation c of a function y and its physical values 
)(xyv =  is performed by the functions v=t2x(c,kind) and c=x2t(v,kind) based on the 

Fast Chebyshev Transform. 

If a function y is given by its Chebyshev coefficients c  and we need its values at some 
points [ bax ,∈ ]c c, a conversion matrix T  is obtained from the code Tc=cpv(n,xc,dom), 
where 
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where ξ  is transposed as a column vector and we have cTxy cc ⋅=)( . If T=cpv(n,x,dom) 

where x  are the Chebyshev points, then the matrix T performs the (non fast, but useful if 
) conversion between the coefficients 256≤n c  of the function y and the values )(xyv =  

through the formulas cTv ⋅=  and vTc ⋅= −1 . 

The differentiation is discretized by a differentiation matrix D given by the code 
D=deriv(n,dom). If c is the column of Chebyshev coefficients of a function , then )(xy

cD ⋅ is the column of the Chebyshev coefficients of the derivative 
dx
dy

. The definition of D is 

based on the recurrence relations 
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Similarly, the code [J,J0]=prim(n,dom) calculates the integration matrix J such that the 
coefficients of a primitive of are )(xy cJ ⋅ . The coefficients of the particular primitive vanishing 
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at  are obtained by using )1(doma = cJ ⋅0 . Another useful code is X=mult(n,dom). Then 

c⋅X

)

 is the column of the Chebyshev coefficients of the multiplication by the independent 
variable for . )(xyx ⋅

( )1,1 →−∞

domx∈

( 1,1−∞CIf  is a linear operator then let : CL uc, be the corresponding coefficients 

of and . The matrix )(xy )x( (yL ) L  that maps c  into cL ⋅=u  is the Chebyshev approximation 
of . Chebpack implements the Chebyshev spectral method as a Lanczos’ tau method where we 
work in the spectral space of the coefficients. The linear operators of the differential or integral 
problem, such as differentiation, integration, product with the independent variable or modified 
argument, are discretized to their corresponding approximating matrices. The final form of the 
linear problem 

L

( )( ) (xfx = )L y  becomes, after the discretization, a pure algebraic linear problem 

in an operatorial form fcL =⋅  with the supplementary conditions of the continuous problem 
included. It is important to remark that linear operators are better represented in the spectral space 
of the coefficients, while the nonlinear operators are easily handled in the physical space of the 
values. All the above codes take into account a general dom, see the open access chapter Trif [3] 
for more details. The basic results for the convergence of the above spectral approximations are 
given by the Theorems 8.1, 8.2, and 21.1 from Trefethen [4]. 

3. THE FRACTIONAL OPERATORS 
The Riemann--Liouville fractional integral operator of order q is defined by 
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where the prime sign denotes the summation whose first term is halved, then 
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approximates the physical values v  of )(xyJ q  at the Chebyshev points ( )
njjxx

,,1K=
=

)

. 

Consequently, the spectral approximation of  is given by the Chebyshev coefficients (xyJ q

cIvT ⋅≡−1 , where T  is given by (5), c  is the column vector of the coefficients of  and )(xy I  
is the basic integration matrix calculated in [1] by the code I=fracbas(x,dom,q) for 

. 10 << q

Many examples in [1] confirm the efficiency of this approach. But in [1] there are also examples 
where this method is not suitable. Such an example is the Abel integral equation of the second 
kind 

∫ =
−
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( )xerfcexy x
ex ππ−= 1)( 64=. The above standard method gives for with the exact solution n

4107543. −×
3106 −× 6107658.2 −×

 

the numerical values of the solution with an error of 1 and needs a computing time of 
seconds. For  the error becomes  for an elapsed time of  512=n 3.3
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n
seconds. In this case the solution   has singularities of lower-order derivatives and a good 

approximation of it requires an excessively large value of  . Obviously, in practical applications 
it is however required to approximate the fractional integrals or derivatives of such badly-behaved 
functions. 

If we have to solve the Abel integral equation of the first kind 
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then let us suppose, cf. [5], that  can be approximated accurately by  f
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and, consequently, 
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x

The above hypergeometric functions  can be calculated directly by Matlab or by a recurrence 

formula from [5]. Obviously, if c  is the column vector of the Chebyshev coefficients from (12) 

then (15) is of the form cIxy ⋅=)( , where I is the solution matrix of dimension n from (14) and 

x  is the column of the Chebyshev nodes. Note that in order to eliminate the strong singularities at 
the origin of this form of the solution, we must choose 01≥β  such that −β+q . 

A test problem is the Abel integral equation of the first kind (see [5]) 
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so that 1,
2
1

== βq  and then 01≥−+ βq  and we use the Chebyshev spectral approximation 

for the function . For  the error is about  and the computing time is 0.5 
seconds. The Chebpack code is test_as1.m (where, for simplicity, the hypergeometric 
functions are calculated directly by Matlab). 

)(xg 12=n 151066.2 −×

( )

Let us return to the Abel integral equation of the second kind (10). Chebpack can handle this kind 
of problems by using the formulas (13) and (14) under the form 
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are in fact polynomials. 

If we consider the equation 
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of the type ( )( ) )()( xfxyJqI q =Γ+ λ , the formal solution is (see Gorenflo & Mainardi [6]) 
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An iterative form of (21) is 
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If we consider functions such that 

( ) =x
−1n

  
(23)

the code TH=convert(q,gam,x) implements the recurrence formula from [5] for the fast 
computation of the hypergeometric functions in (19). 

This code gives the conversion matrix TH between the two representations of ,  )(xf

  
(24)

aTHcTTxf ⋅=⋅=)(

c a and where  are the column vectors of the Chebyshev and the hypergeometric coefficients of 
, respectively, and Tf T  is derived from the matrix T  by changing the sign of the odd lines. In 

each iteration (22),  is converted from the Chebyshev to hypergeometric form, by applying 1−ky
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kythe corresponding formula (18) for each j - term and obtaining  in Chebyshev series form, but 

now with the factor  included. Finally, we sum the physical values of the intermediate terms 
 until ε<ky  for some norm. 

The above algorithm involves the inversion of the matrix TH and the quality of the inversion 
depends on the condition number of TH . Table 1 shows the condition number of this matrix for 

5.0== γq  compared to that of T and Vandermonde matrix V  (used in calculating interpolating 
polynomial coefficients directly at Chebyshev interpolation nodes).  
Table 1. Condition numbers for the matrices T, TH, V  

 TH ( 5.0== γq ) V  T 

16=n 1016.1 × 2.1662 20.3623 11  

32=n 1055.7 × 2.1195 42.5702 18  

64=n 1083.3 × 2.0855 87.3065 19  

We remark that the same Chebyshev spectral method, but not in operational form and without 
applications to Abel integral equations is used in Theorem 3.2 from Sugiura & Hasegawa [7] 
where the uniform approximation of the fractional derivatives is also proved. 

The code test_as2.m  applies this procedure for 5.0=γ  to solve the equation (10) and gives 
a numerical solution with an error of  for 15103 −× 16=n  after 54 iterations and 0.01 seconds 
elapsed time. This shows a strong improvement in efficiency compared to the standard method of 
Chebpack. 

4. NUMERICAL EXAMPLES 
This section contains some examples for fractional integral equations with algebraic singularities. 

Example 1. Consider the first kind Abel integral equation from [8] 

arch (IJSIMR)              Pa
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6
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=βFor  and  the code example_as1.m  (similar to test_as1.m with the new 

data) gives the exact solution (xCxyex =)(  where ( ) ( ))3/218/17 ΓΓ= π6/C . 

Example 2. Consider the second kind Abel integral equation from [9] 
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with the exact solution . The code example_as2.m applies twice the iterative 

method separately for the right-hand side (a well behaved function, 

x
ex exy =)(

γ ) and for 

( )xerfexf )(2
xπ= x 5.0= , which is of the form  times a well behaved function (γ ). The 

superposition of the corresponding solutions )(2 xy)(1 xy 8+  for =n
16

 approximates the exact 
solution with an error of  in 0.011 seconds elapsed time. For 10105.6 −× =n  the error becomes 

 and the elapsed time becomes 0.016 seconds. Both cases needed 55 iterations in (22). 15104 −×

Example 3. Consider the fractional differential problem from [10] 
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The problem can be transformed to 1)()( 2
1

=+ xyJxy . 

The standard procedure of Chebpack (code example_as3.m)  gives for  an error of 
 after an elapsed time of 0.002 seconds. For 

32=n
4103.2 −× 512=n  the error becomes  after 

an elapsed time of 3.15 seconds. 

710−×9

The improved procedure  (taking into account the algebraic singularity of the solution at the 
origin) example_as3_improved.m gives for 16=n  an error of  after 36 iterations 
and an elapsed time of 0.014 seconds. 

16106 −×

Example 4. Consider the nonlinear Abel type integral equation from [11], [12] obtained by 
transforming a Lighthill's problem (1950) which describes the temperature distribution of the 
surface of a projectile moving through a laminar layer 

( )
[ ]∫ ∈

−
−=

x

xdt
tx

tytxy
0 3

2

43
1,0,)(31)(

π

1

.  
(29)

According to the formula (18), we look for the solution as 
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where  and  are polynomials. A small piece of program nonlin.m calculates 
the physical values of the polynomials  and  such that 
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Next, by using the conversion matrices TH=convert(q,gam,x)  and R can be written 
as a combination of hypergeometric functions. The integral in (29) becomes 
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[ ]nxx ,,1 K= )(, tf j γx  and  given by (19). for 

)(),( xqxp )(xr and Finally, if we consider as unknowns the values of the polynomials  

concatenated in a long column vector v  with 3n entries, the above relations lead us to a nonlinear 
system ( ) 0=vF  of the form 
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(33))(xf

)(xfwhere  depends nonlinearly on v . This system is then solved by fsolve of Matlab starting 

with an initial approximation of the solution as ( ) 1)0( =xy . 

The code example_as4.m  gives for n=32 and an elapsed time 0.75 seconds the value 
while for n=64 and the elapsed time 3.62 seconds gives the 

value . The comparison values for this problem are the best one 
from [13], and the best one from [11], 

 00967750.66485723y(1) ≈
08751650.66485715y(1) ≈

0.66485715y(1) ≈  08 0.664859y(1) ≈ . For n=128 this 
Chebpack solution is graphically compared with that from [11] and with the asymptotic series 
approximation of Lighthill (see again [11]) in Fig. 1. For all these cases fsolve needs 6 
iterations. 

If we need an approximation on a larger interval [ ]b,0  with , then let 1>b bx /=ξ  and 

bt /=τ  and (29)  becomes 
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With this small change, (33) with 3
23 b

π
λ =  instead of 

π
λ 3
=  gives the numerical values 

( )ξby  of the solution on the larger interval [ ]b,0 . The code example_as4_long.m performs 
these calculations for n=128 and b=25 in 8 iterations and the numerical solution on [  is in 
good concordance with the asymptotic series of Lighthill [11]. 

]25,0

 

Figure 1. Approximations for the Lighthill's equation 

5. CONCLUSION  
The Chrbyshev spectral method implemented in our package Chebpack leads to very simple and 
efficient codes that can solve different kinds of problems for fractional differential equations in a 
unified approach. The Chebyshev grid points are automatically clustered near the left endpoint of 
the working interval but this is not enough for a good approximation if the solution has 
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singularities at that point. The presented paper extends the capabilities of Chebpack to spectrally 
approximate such functions with algebraic singularities. All the necessary Matlab sources for 
reproducing the above tests and examples are now part of an updated version of Chebpack [2] in 
the folder Examples, subfolder Fractional differential equations. 
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