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Abstract: This paper aims to model extreme rainfall events using 60 years of daily data based on extreme 

value theory for four cities in China. The purpose is to allow decision makers to make informed decisions 

and to avoid or at least reduce flood caused damage to life and property. Generalized extreme value 

distributions are used for fitting monthly and semiannual maxima according to the Block Maxima 

Approach. Rainfall exceeding an extremely high threshold is modelled by Generalized Pareto distributions 

.The thresholds are selected based on the analysis of three methods, Hill plot, mean excess plot and 

Standardized Precipitation Index. Finally, we estimate the parameters for both models and calculate return 

levels for five different return periods. Statistical tests for stationarity, KPSS and Man-Kendall tests support 

the study. The results show that GPD has a better fitting performance than GEV. Further, we can determine 

how often a flood occur in a certain city and during which season, rainy or dry season. For example, for 

Nanjing it can be neglected that a flood occurs during dry seasons. But for other cities, like Shantou, this 

might be rare events but with a higher frequency of occurrence. 

Keywords: Extreme value theory, precipitation, generalized extreme value distribution, generalized 

Pareto distribution, return level, China

 
1. INTRODUCTION 

During the year 2013, China experienced severe floods caused by extreme precipitation. In 

August 2013 for example, the south provinces Guangdong, Guangxi and Fujian and the north 

eastern provinces Heilongjiang, Jilin and Liaoning were hit by heavy rain that caused flooding 

(RCSC, 2013). For the north eastern region, it was the worst flooding in 50 years (Hunt and Ke, 

2013). Millions of residents were affected, many people died or went missing. Direct economic 

losses solely for Guangdong province are reported to be CNY 13 billion and for Heilongjiang 

province to be around CNY 7 billion where potential losses in future crop yields are not yet 

included (RCSC, 2013).  

Beside these recent events, China is regularly affected by extreme rainfall that has enormous 

influence on social development and that threatens safety of human life and property (Feng et al., 

2007). In 2008 for example, the Spring Festival was spoiled by heavy snowstorms in many 

provinces. The total costs were approximately CNY 80 billion which was mainly used for refugee 

settlements and maintenance of infrastructure (BBC, 2008). In 2011, a heavy rain brought much 

inconvenience for cars and pedestrians that soaked in Nanjing, Jiangsu province (CCTV, 2011). 

Most floods or mud-rock slides triggered by severe rainfall impair agricultural production, public 

facilities, buildings and transport (Yang, 2012).  

Consequently, estimations of extreme rainfall events in China play a significant role in an 

efficient risk appraisal and for the reduction of losses of the economy. To know the statistics that 

a certain flood event will occur gives advice to decision makers to design efficient mitigating 

measures. This covers firstly the planning and construction of water management, sewerage 

systems, capacity of channels and river basins, etc. Second, it supports the decision how much 

and what kind of insurance against water damage should be bought. Finally, the knowledge of 
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return levels of floods helps to inform the citizens that they are better prepared in a case of 

flooding (Overeem et al., 2008).            

To contribute to the achievement of these goals, this paper focuses on the estimation of the most 

appropriate distribution of extreme precipitation in four Chinese cities, Nanjing, Shantou, Urumqi 

and Qiqihaer. The estimation is based on a universal principle, Extreme Value Theory (EVT). 

EVT contains two fundamental distributions, Generalized Extreme Value distribution (GEV) and 

Generalized Pareto distribution (GPD), which are both applied in this paper. Details for the GEV 

and GPD approach are given in Section 3. We elaborate for both models the return levels of 

certain flood events for 5, 10, 20, 50, and 100 years. As many regions in China have marked dry 

and wet periods during the year, we distinguish further between dry and wet seasons as risk 

mitigating measures may be different during each time of the year. The probability of occurrence 

of extreme rainfall might be underestimated by assuming that the model is stationary (Coles et al., 

2003). Therefore, stationary tests are applied to determine whether non-stationarity influences the 

application of GEV and GPD models. To sum up, this paper contributes to the existing literature 

by a comprehensive statistical analysis of extreme precipitation events in four cities of China in 

the north, east, south and west. Based on most recent flood events in 2013, Shantou and Qiqihaer 

are included in particular to study them from a statistical perspective.    

The next section of the paper gives a literature review of previous and similar work. In Section 3, 

the methodology of EVT, GEV and GPD is elaborated. Section 4 presents and discusses empirical 

results. Recommendations and limitations in Section 5 conclude the paper.   

2. LITERATURE REVIEW 

First insights in EVT are published by Fisher and Tippett in 1928. Significant contributions to the 

statistical modeling of extremes followed by Jenkinson 1955 for GEV, Balkema and de Haan 

1974 and Pickands 1975 for GPD. In comparison to the long history of theoretical results of EVT, 

the empirical analysis of precipitation data using EVT is relatively new. In the last two decades, 

researchers all over the world applied either the GEV or the GPD approach to rainfall data from 

Europe (Miroslava, 1992; Bordi et al., 2007), America (Nadarajah, 2005), Oceania (Withers and 

Nadarajah, 2000; Li et al., 2005) or Asia (Nadarajah and Choi, 2007; McAleer et al, 2012).  

For China in particular, several papers exist dealing with the analysis of extreme precipitation and 

its trends (Gemmer et al., 2004; Wang and Zhou, 2005; Liu et al., 2005; Zhai et al., 2005; Sun and 

Ao, 2013). For example, Wang and Zhou (2005) stress that an obvious increasing trend of 

extreme daily rainfall mainly took place in the east, southwest and northwest of China in summer 

months from 1961 to 2001. However, fewer studies apply EVT techniques for the estimation of 

the tail distribution and derivation of return levels. Feng et al. (2007) provide the first 

comprehensive study of GEV estimation and return levels based on Chinese data. The authors 

conclude that the highest return levels were found in the very Southern parts of China. In Eastern 

China, high return levels are reported in comparison to low return levels in the northwest. Studies 

using the GPD approach are conducted by Li (2013) for data from whole China or more locally 

based by Dong et al. (2011) for Yellow-Huaihe and Yangtze-Huaihe rivers basins and Jiang et al. 

(2009) for Eastern China. Jiang et al. (2009) state that the fitting performance of GPD is better 

than for GEV. Their reported return levels are in line with the findings of Feng et al. (2007) and 

decrease from the south to the north.         

3. METHODOLOGY 

3.1 Data Description 

To cover locations in the north, east, south and west and in different climate zones of China, the 

four cities Qiqihaer (Heilongjiang province), Nanjing (Jiangsu province), Shantou (Guangdong 

province) and Urumchi (Xinjiang province) are chosen in the empirical study. Qiqihaer and 

Shantou are of particular interest given most recent flood events in 2013. All data starts from year 

1951 to 2010 and are obtained from the National Meteorological Information Center. The daily 

precipitation amount is measured within 24 hours (8am on a particular day to 8am on next day). 

The climate of Qiqihaer is humid continental and monsoon-influenced. Nanjing is located in the 

subtropical monsoon climate zone. Shantou lies within the subtropical marine and monsoon 
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climate zone. Urumchi belongs to the temperate zone with continental climate (Domroes and 

Peng, 1988).  

The descriptive statistics of the daily rainfall datasets for the four cities are given in Table 1. 

According to their climate zones, Shantou is the city with most rain, followed by Nanjing and 

Qiqihaer. Urumchi is the driest city. 

Table 1. Descriptive statistics of daily rainfall datasets, 1951 to 2010 (unit: mm, n=21915)   

 Nanjing Shantou Urumchi Qiqihaer 

Minimum 0 0 0 0 

Maximum 207.20 297.40 57.70 135.50 

Mean 2.90 4.34 0.73 1.18 

Median 0 0 0 0 

Mode 0 0 0 0 

Standard 

deviation 

9.73 14.80 2.76 5.02 

Range 207.20 297.40 57.70 135.50 

3.2 Generalized Extreme Value Distribution (GEV) and Block Maxima 

The most classical model for extreme events is the Block Maxima approach. This model is 

appropriate when the maximum observations of each period or block with a predefined and fixed 

length are assembled from a large number of identically and independently distributed (iid) 

variables (McNeil, 1999). In this case, the asymptotic distribution of the maximum observations is 

exactly one of three well known distributions (Fisher and Tippett, 1928). The cumulative 

distribution function of these three distributions can be summarized by the GEV (Jenkinson, 

1955) and is given by 

 

where  are the extreme values from the blocks, and are the shape, scale and location 

parameters, respectively. For  the Gumbel distribution is determined. For , we get the 

Frechet distribution with a fat-tail. In the case of  the Weibull distribution is obtained. The 

parameters  are estimated by Maximum likelihood estimation (MLE). When we assume 

that the variables are independent, the likelihood function is given by the product of the 

observations’ densities.  

3.3 Generalized Pareto Distribution (GPD) and Peak over Threshold (POT) 

A second methods to analyze the distribution of extreme events is called Peak over Threshold 

(POT) method which considers the maximum variables exceeding a predetermined threshold. 

Given a threshold , the distribution function of extreme values of  over  is, 

 

 represents the probability that the value of  exceeds the threshold  by at most amount , 

where . Balkema and de Haan (1974) and Pickands (1975) showed that the distribution 

 converges to GPD when the threshold is sufficiently high. The cumulative distribution 

function for GPD is, 
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where are the exceedances, and  are the shape and scale parameter, respectively. There are 

three types of GPD. For we have an Exponential distribution with medium-size right tail. 

If ξ < 0, H(x) is an Ordinary Pareto distribution describing a positive long tail. In the case of ξ > 

0, H(x) is a Pareto (II) type distribution for a positive short tail. 

The estimation of parameters is possible with the method of probability weighted moments, the so 

called L-moments, or with MLE (Hosking et al., 1984). In this study, MLE is used. Before the 

parameter estimation, the initial step is to choose an appropriate threshold. We are faced with the 

problem to find a threshold that is sufficiently high to support the convergence. However, it 

should not be too high as otherwise the sample of these extreme high observations is very small. 

In other words, there is a tradeoff between bias and variance. We use three methods of threshold 

selection including Hill plot (Hill, 1975), sample mean excess plots, and Standardized 

Precipitation Index (SPI) (McKee et al., 1993).  

The Hill plot specifies the relationship between the estimated tail index  and either  or the 

threshold, where  is the number of exceedances and is the sample size: 

 

A threshold is chosen from the Hill plot where the tail index starts to be stable (Hill, 1975).  

The mean excess function is the expectation of each observation deducted by a fixed amount 

given that this observation is not smaller than that fixed amount: 

 

Empirically, is estimated by  based on the realizations of random variables, . 

 

The SPI is used to quantify extreme wetness and dryness per month in a location (McKee et al., 

1993). McKee et al. (1993) state that the auto-correlation of individual observations is unobvious 

as the monthly precipitation is usually independent. Hence, the frequency distribution of monthly 

precipitation is estimated by a two-parameter Gamma distribution for every month of a year. As a 

next step, the empirical Gamma probability density distribution is transferred into the Normal 

distribution. Abnormality in the transformation quantifies the meaning of relatively wet and dry. 

Therefore, the SPI values can be converted into Z-indexes of the Standard Normal Distribution 

(Bordi et al., 2007). Based on Yuan and Zhou (2004), Table 2 lists the classification of scales for 

SPI and Z-index in China. For example, the extremely wet conditions can be identified by Z-

values which are greater than 1.96.  

To summarize, Hill-plot and sample mean excesses belong to the family of semi-parametric 

models, while SPI fits to non-parametric model. This paper applies all three methods to select 

thresholds.  

Table. 2 Classification of Scales for SPI and Z-Index 

Z-index SPI values Class 

>1.96 >2.00 Extremely wet 

1.44 to1.96 1.50 to 2.00 Moderately wet 

0.84 to1.44 1.00 to 1.50 Slightly wet 

-0.84 to 0.84 -1.00 to 1.00 Normal 

-1.44 to -0.84 -1.50 to -1.00 Slightly dry 

-1.96 to -1.44 -2.00 to -1.50 Moderately dry 

<-1.96 <-2.00 Extremely dry 
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3.4 Extreme Quantile Estimation for GEV and GPD 

A T-year return level has a probability of per cent to be exceeded once in a year. For 

example, rainfall of 170 mm or larger equally occurs every 60 years in a region. The return levels 

at different return periods can be evaluated through the quantile estimation of fitted GEV and 

GPD, that is, 

      

 is the inverse of the GEV or GPD. For GPD, it is assumed that the number of exceedances  

over the extremely large threshold  is approximately close to a Poisson distribution with 

parameter , which is also the rate of exceedances per year. Hence,  is the number of 

exceedances in the return period of T years. The  can be estimated by , where  is 

the number of years with available data (Maraun, 2010).  

3.5 Stationary Tests 

Stationary tests including graphic examination, KPSS (Kwiatkowski, Philips, Schmidt and Skin) 

and non-parametric Mann-Kendall tests should be carried out since the assumption of stationarity 

is crucial for the application of GEV and GPD. The KPSS stationary test (Kwiatkowski, Phillips, 

Schmidt and Shin) judges whether the trend is stabilized around a constant, a linear line or non-

stationary (Hasna and Chung, 2010). The test statistics are compared with critical values at 

different significant levels. Thus, the null (H0) and alternative (H1) hypotheses are: 

H0: Stationary around a constant or a linear trend, 

H1: The trend is non-stationary. 

The Mann-Kendall (MK) test determines the existence of either an increasing or decreasing 

tendency in monthly and semi-annual extreme rainfall (Hasna and Chung, 2010). The p-value of 

the null hypothesis is used to determine the tendency of the observations. Thus, the null (H0) and 

alternative (H1) hypotheses are: 

H0: There is no trend, 

H1: There is an increasing/ decreasing trend. 

4. RESULTS AND DISCUSSION 

4.1 Modeling using GEV 

For GEV estimation, the Block Maxima of monthly and half-yearly rainfall are extracted for all 

four cities. Table 3 contains descriptive statistics for both periods.   

Table. 3 Descriptive statistics of monthly (n=720) and half-yearly (n=120) maximum, 1951 to 2010 (unit: 

mm)   

 Nanjing Shantou Urumchi Qiqihaer 

 Monthly Half-

yearly 

Monthly Half-

yearly 

Monthly Half-

yearly 

Monthly Half-

yearly 

Minimum 0 24.30 0 24.60 0 6.60 0 8.80 

Maximum 207.20 207.20 297.40 297.40 57.70 57.70 135.50 135.50 

Mean 32.07 74.81 45.50 116.21 9.72 22.23 13.42 39.89 

Median 24.00 65.20 30.60 103.25 7.30 20.95 5.50 33.65 

Mode 12.80 40.20 0 75.00 4.00 18.60 0 30.30 

Standard 

deviation 

28.91 37.15 46.33 53.28 8.37 10.14 17.69 21.77 

Range 207.20 182.90 297.40 272.80 57.70 51.10 135.50 126.70 

Table 4 gives the parameters of GEV as results of MLE fitted to monthly and half-yearly maxima. 

The first line of each parameter indicates the value and the standard errors (s.e.). The 

corresponding 95% confidence intervals (CI) are included in the second line. For monthly 

maxima, the shape parameter ξ is for all four cities positive and the CI do not include zero which 
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supports the positive sign of ξ. This means that the fat-tailed Frechet distributions are obtained. 

For half-yearly maxima, zero is included in the CI. Therefore, a Gumbel distribution cannot be 

excluded. These findings are in line with Feng et al. (2007). 

Table. 4 GEV parameter estimates for monthly and half-yearly maxima 

 Nanjing Shantou Urumchi Qiqihaer 

Parameter

s (95% CI) 

Monthl

y / s.e. 

Half-yearly / 

s.e. 

Monthly 

/ s.e. 

Half-

yearly / 

s.e. 

Month

ly / 

s.e. 

Half-

yearly / 

s.e. 

Monthl

y / s.e. 

Half-

yearly / 

s.e. 

ξ 
 

(95% CI) 

0.319 / 

0.036 

0.171 / 0.089 0.497 / 

0.054 

 

0.035 / 

0.073  

 

0.285 / 

0.038 

 

0.074 / 

0.074 

 

1.245 / 

0.067 

 

0.127 / 

0.083 

 
(0.250, 

0.389) 

(-0.005, 

0.346) 

(0.391, 

0.603) 

(-0.108, 

0.178) 

(0.211, 

0.358) 

(-0.070, 

0.219) 

(1.113, 

1.377) 

(-0.035, 

0.288) 

σ 

 
(95% CI) 

14.478 / 

0.534 

24.510 / 

2.082 

21.647 / 

0.973 

 

40.135 / 

3.081 

4.550 / 

0.167 

 

7.248 / 

0.565 

 

3.906 /  

0.263 

 

14.693 / 

1.203 

 
(13.469, 

15.563) 
(20.750,28.95

0) 

(19.822, 

23.641) 

(34.529, 

46.651) 

(4.234, 

4.889) 

(6.221, 

8.444) 

(3.424, 

4.457) 

(12.515, 

17.250) 

μ 

 

(95% CI) 

17.880 / 

0.625 

56.120 / 

2.622 

19.776 / 

1.032 

 

91.504 / 

4.163 

5.543 / 

0.199 

 

17.476 / 

0.753 

 

2.606 / 

0.180 

 

29.395 / 

1.553 

(16.655, 

19.104) 

(50.981,61.25

9) 

(17.753, 

21.798) 

(83.344, 

99.664) 

(5.154, 

5.932) 

(16.000, 

18.952) 

(2.254, 

2.958) 

(26.351, 

32.439) 

By checking density plots, cumulative distribution plots, probability plots and QQ plots 

respectively, the fitting performance of GEV can be analyzed. The fitted lines in the density plots 

have clear tails for all cities. The cumulative plots are well fitted to the empirical data for both 

monthly and half-yearly maxima. In terms of probability plots, the GEV fitted lines estimate the 

extreme values much more precise than the Normal distribution. For monthly and half-yearly 

observations, the probability fitting curves and QQ plots are congruent in all cases. Only a few 

highest points diverge from the fitted lines. 

Table 5 lists the return level estimates at different return periods for monthly and half-yearly 

maxima. The 95% CI are included in brackets. The estimated return levels and CI increase with 

the increase of the return period. Compared with the lower bound of the confidence interval, the 

upper bound is likely to be further away from the predicted return level when the return period is 

longer. Recalling Table 3, the highest rainfall amount in Nanjing of the observed period from 

1951 to 2010 was 207.2 mm. This value appears in CI  at T=10 for monthly and at T=20 for half-

yearly samples. This pattern is similar for Urumchi. For Shantou, the highest observation is also 

covered by T=20 for half-yearly samples. For monthly samples it is already included in T=5. The 

maximum value of Qiqihaer lies within the CI of T=50 for semiannual values. Return levels based 

on monthly maxima are not possible to compute. 

According to China Meteorological Administration (2012), 24-hour rainfall amount exceeding 

250 mm is considered as extreme rainfall that can cause floods in Southern China. For Nanjing, 

this value is contained in the CI of T=20 for maximum monthly observations and T=50 for 

semiannual maxima. In Shantou, the event of a floods occurs much more often as 250mm is 

included in the CI of T=5 for monthly and T=10 for half-yearly observations.  Hence, floods 

might occur once in every 20 to 50 years in Nanjing and every 5 to 10 years in Shantou.  

Table 5. GEV return level estimates for monthly and half-yearly maxima  

Selection Period 

T (years) 
5 10 20 50 100 

Monthly Max 

Nanjing 

139.438 

(120.161, 

166.147) 

180.973 

(151.041, 

223.980) 

232.660 

(187.681, 

299.699) 

320.981 

(247.536, 

437.008) 

407.135 

(301.523, 

578.915) 
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Half-yearly Max 

Nanjing 

123.361 

(109.749, 

145.588) 

150.920 

(129.830, 

190.498) 

181.447 

(149.689, 

247.645) 

227.373 

(175.645, 

348.148) 

267.060 

(195.140, 

449.122) 

Monthly Max 

Shantou 

307.790 

(242.743, 

409.104) 

445.022 

(331.759, 

631.786) 

638.3502 

(448.555, 

970.388) 

1020.600 

(676.900, 

1703.000) 

Not 

computable 

Half-yearly Max 

Shantou 

185.452 

(168.566, 

210.172) 

217.089 

(194.011, 

256.593) 

248.900 

(217.348, 

309.097) 

291.723 

(245.484, 

389.603) 

324.8883 

(264.927, 

460.329) 

Monthly Max 

Urumchi 

40.713 

(35.227, 

48.393) 

51.949 

(43.543, 

64.166) 

 

65.608 

(53.158, 

84.387) 

88.314 

(68.240, 

120.160) 

109.878 

(81.774, 

156.250) 

Half-yearly Max 

Urumchi 

35.2310 

(31.919, 

40.163) 

41.567 

(36.916, 

49.642) 

 

48.121 

(41.642, 

60.700) 

57.234 

(47.523, 

78.277) 

64.521 

(51.727, 

94.274) 

Half-yearly Max 

Qiqihaer 

67.655 

(60.116, 

79.383) 

82.383 

(71.345, 

102.623) 

 

98.194 

(82.228, 

131.153) 

121.141 

(96.153, 

179.253) 

140.281 

(106.432, 

225.622) 

4.2 Modeling using GPD 

The choice of appropriate thresholds is based on the three methods presented in section 3.3. To 

examine the differences in dry and rainy seasons, the whole year’s data is divided into two 

seasons: dry season from December to March and rainy season from April to November. We 

select one constant threshold for the whole year, and two seasonal thresholds for dry and rainy 

season solely.  

The best indicated thresholds by all methods are finally chosen for the estimation of parameters. 

Fig. 1 displays the Hill plots for daily precipitation of the whole year for the city with most rain, 

Shantou and for Urumchi as the driest city. Hill plots for the other two cities follow a similar 

pattern. Two red dashed curves around the blue curve are the bounds of 95% CI. The curve for 

Shantou starts to be steady after around 100 mm for daily data, while the stability of the tail index 

emerges after 20 mm for Urumchi.  

0 50 100 150 200 250
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1.5
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2.5
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3.5

Thresholds (mm)
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i

Shantou-Hillplot for Daily Rainfall (mm) from 1951 to 2010

 

0 5 10 15 20 25 30 35 40 45 50 55
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1
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2
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3
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x
i

Urumchi-Hillplot for Daily Rainfall (mm) from 1951 to 2010

 

Figure 1. Hill plots for daily precipitation for Shantou (above) and Urumchi (below) 
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Second, the mean excess plots are plotted. The possible threshold is the point when the mean 

excess plot shows linearity, and estimated parameters look stable at different thresholds (Hasan 

and Chung, 2010). As an example, the sample mean excess plot for the constant threshold of 

Nanjing is presented in Fig. 2. In this case the constant threshold could be chosen as 60 mm. 

Mean excess plots for rainy and dry seasons for all cities can be drawn and analyzed in a similar 

way.  

The third method incorporates the SPI. Fig. 3 exposes tamount of rainfall against Z-indexes for 

six years for Qiqihaer. The red straight line in each graph is the benchmark of 1.96. We can 

choose the level as a threshold when the Z-index starts to be greater than 1.96. As an average over 

the years, a constant threshold of 25 mm seems appropriate. The analysis like this is done for 

other cities and for rainy and dry seasons as well. 

Table 6 gives an overview of the chosen threshold after completing the analysis of the three 

methods for all cities and all seasons. 
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M
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a
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x
c
e

s
s

Nanjing Mean Excess Plot of Daily Rainfall (mm)

 

Figure 2. Mean excess plot for daily precipitation for Nanjing 
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Figure 3. Z-index against daily rainfall in July and August for six years for Qiqihaer 

Table 6. Constant and seasonal thresholds   

Threshold (mm) Nanjing Shantou Urumchi Qiqihaer 

constant 

 

 

60 (n=124) 110 (n=78) 20 (n=90) 25 (n=222) 

rainy season 

 

90 150 20 45 

dry season 

 

 

30 60 10 10 
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After threshold selection, the parameters for GPD as given in equation (3) are estimated using 

MLE. The results are represented in Table 7. The exceedances of Nanjing have a long tail and 

follow the Ordinary Pareto distribution as the shape parameters for all seasons are negative. For 

Shantou, ξ is negative for constant and rainy threshold, but not for the dry season. Data from 

Urumchi follow the Ordinary Pareto distribution for rainy and dry season, but not for the whole 

year. In the case of Qiqihaer, a Pareto (II) type distribution was found in all cases. As all CI 

include the zero for the shape parameter, the Exponential distribution cannot be excluded.   

Table 7. GPD parameter estimates for constant and seasonal thresholds 

 Nanjing Shantou 

Parameters 

(95% CI) 

Constantover 

60 / s.e. 

Rainy over 

90 / s.e. 

Dry  over 

30 / s.e. 

Constantover 

110 / s.e. 

Rainy over 

150 / s.e. 

Dry  over 

60 / s.e. 

ξ 
 

(95% CI) 

-0.052 / 

0.095 

 

-0.159 / 

0.153 

 

-0.101/ 

0.108 

 

-0.127 / 

0.114 

 

-0.232 / 

0.203 

 

0.238 / 

0.189 

 
(-0.237, 

0.134) 

(-0.459, 

0.141) 

(-0.313, 

0.110) 

(-0.350, 

0.097) 

(-0.630, 

0.166) 

(-0.131, 

0.608) 

σ 

 
(95% CI) 

31.052 / 

4.049 

 

34.746 / 

7.416 

 

9.495 / 

1.449 

 

50.443 / 

8.072 

 

54.692 / 

14.983 

 

21.269 / 

5.078 

 
(24.048, 

40.094) 

(22.868, 

52.792) 

(7.040, 

12.806) 

(36.863, 

69.026) 

(31.969, 

93.566) 

(13.321, 

33.959) 

 

 Urumchi Qiqihaer 

Parameters 

(95% CI) 

Constant 

over 20 / s.e. 

Rainy over 

20/ s.e. 

Dry  over 10 

/ s.e. 

Constant 

over 25 / s.e. 

Rainy over 

45 / s.e. 

Dry  over 

10 / s.e. 

ξ 
 

(95% CI) 

0.002 / 

0.113 

 

-0.037 / 

0.117 

 

-0.118 / 

0.095 

 

0.095 / 

0.076 

 

0.032 / 

0.139 

 

0.372 / 

0.311 

 
(-0.219, 

0.223) 

(-0.266, 

0.193) 

(-0.304, 

0.069) 

(-0.055, 

0.244) 

(-0.241, 

0.304) 

(-0.237, 

0.981) 

σ 
 

(95% CI) 

7.907 / 

1.220 

 

8.765 / 

1.420 

 

4.908 / 

0.665 

 

13.078 / 

1.326 

 

15.895 / 

3.079 

 

3.764 / 

1.310 

 
(5.843, 

10.700) 

(6.381, 

12.040) 

(3.764, 

6.340) 

(10.721, 

15.952) 

(10.874, 

23.235) 

(1.902, 

7.447) 

Similar to GEV, we examine how well the GPD model fits to the exceedances with probability 

distribution plots, fitted and empirical distribution plots, probability plots and QQ plots. We can 

conclude that the fitted probability density plots and the fitted cumulative plots match the 

empirical data consistently. Compared to GEV, the GPD probability plots are more appreciable 

for all cities, especially for higher values. From the QQ plots, the number of deviating 

observations for GPD is less than the number of observations modeled by GEV in all cases. To 

sum up, GPD is superior to GEV in terms of fitting which is in line with the literature (Jiang et al., 

2009). 

Table 8 describes the return level estimates at different return periods of daily exceedances over 

constant and seasonal thresholds. 95% CI are included in brackets. The pattern of the results is 

similar to GEV. The maximum values during the observation period never appear in the CI for 

dry seasons for Nanjing and Urumchi. For Shantou and Qiqihaer, the highest value of the past can 

be expected to happen even in dry seasons every 50 years.  

Recalling the trigger amount of rain with 250 mm that can cause a flood in Southern China 

(CMA, 2012), we can conclude that a flood event does not happen during dry season in Nanjing. 

Even in rainy seasons, a flood above 250 mm should happen only once in 100 years. However, 

the upper bound of T=50 is already very close to this amount. For Shantou, we get a different 

picture. Here, the city experience a flood every 20 years in rainy seasons and every 50 years in 

dry seasons.   
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Table 8. GPD return level estimates for constant and seasonal thresholds  

Selection 

Period 

T (years) 

5 10 20 50 100 

Constant 

Nanjing        

(60 mm) 

128.328 

(118.120, 

142.419) 

147.077 

(133.909, 

170.074) 

165.170 

(148.147, 

201.586) 

 

188.117 

(164.424, 

249.705) 

204.770  (174.930, 

291.557) 

Rainy  

Nanjing     

(90 mm) 

130.785 

(120.245, 

143.968) 

149.330 

(135.954, 

168.371) 

165.939 

(150.176, 

198.551) 

 

185.265 

(166.075, 

248.597) 

198.122  (175.882, 

295.092) 

Dry Nanjing     

(30 mm) 

46.860  

(43.908, 

50.630) 

52.072  

(48.401, 

58.100) 

56.9300 

(52.788, 

66.726) 

62.849  

(56.978, 

79.992) 

66.975      (59.868,     

91.571) 

Constant 

Shantou     

(110 mm) 

194.0472 

(178.836, 

213.038) 

220.445 

(201.863, 

250.044) 

244.621 

(222.210, 

292.282) 

 

273.485 

(244.695, 

356.332) 

293.197  (258.519, 

411.417) 

Rainy  

Shantou    

(150 mm) 

192.070 

(177.516, 

212.280) 

220.839 

(200.222, 

247.139) 

245.334 

(221.295, 

289.245) 

 

272.222 

(244.958, 

364.340) 

289.084  (260.912, 

437.436) 

Dry Shantou     

(60 mm) 

92.388  

(82.513, 

106.947) 

114.232 

(98.202, 

145.591) 

139.998 

(116.803, 

209.595) 

181.290 

(139.196, 

361.692) 

219.095  (156.720, 

564.733) 

Constant 

Urumchi      

(20 mm) 

35.958 

(33.031, 

39.963) 

41.4601 

(39.5391, 

43.8961) 

46.968 

(44.296, 

50.777) 

54.259 

(50.168, 

60.772) 

59.782 (54.288,   

69.058) 

Rainy  

Urumchi       

(20 mm) 

36.064  

(34.618, 

37.685) 

41.661  

(39.737, 

44.061) 

47.118  

(44.513, 

50.802) 

 

54.121  

(50.246, 

60.348) 

59.266    (54.138,   

68.060) 

Dry 

Urumchi    

(10 mm) 

19.434  

(18.760, 

20.182) 

21.964  

(21.114, 

23.008) 

24.296  

(23.208, 

25.798) 

27.101 

(25.587, 

29.436) 

29.031    (27.121,    

32.142) 

Constant 

Qiqihaer       

(25 mm) 

68.944 

(62.709， 

78.611) 

81.291 

(72.253， 

97.540) 

94.475 

(81.618， 

120.388) 

 

113.284 

(93.649， 

157.913) 

128.636 (102.475， 

193.067) 

Rainy  

Qiqihaer        

(45 mm) 

69.788 

(63.743， 

77.935) 

81.472 

(73.038， 

95.772) 

93.415 

(82.286， 

119.709) 

 

109.607 

(93.368， 

163.860) 

122.169 (101.131， 

209.891) 

Dry 

Qiqihaer    

(10 mm) 

14.949 

(13.003， 

17.821) 

19.382 

(16.032， 

26.898) 

25.119 

(19.609， 

47.758) 

35.372 

(24.564， 

118.854) 

45.815   (28.154， 

251.963) 

Comparing return levels estimated by GEV with the results of GPD, there are not significant 

differences at short periods (T=5 and T=10). The apparent differences occurs at the long return 

periods (after T=20). The confidence intervals obtained using GEV are higher compared to GPD. 

Especially, the upper limits of GPD are much less than the upper limits of GEV for the long 

return periods.  

4.3 Stationary Tests 

In this section, we present the results of the statistical tests introduced in section 3.5 for GEV and 

GPD results. Just from graphical inspection, there are no explicit evidences of trends and no 

changes in the pattern of variation in maximum precipitation. Further to graphic inspection, KPSS 

tests are carried out to test for trends around a constant or a deterministic linearity. The test 

statistics are revealed in Table 9. The critical values at 5% and 10% significant levels are 0.463 
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and 0.347 for trends around a constant, while 0.146 and 0.119 are for stationarity around a 

deterministic trend, respectively. When the test statistics are smaller than the critical values, it 

indicates insignificant evidence to reject the null hypotheses that there is stationarity around a 

constant or a linear trend. This is the case for data from Nanjing. The result for Shantou is similar 

with one exception for GPD with constant threshold. In the case of Urumchi, for all results from 

GEV the null hypotheses can be rejected and non-stationarity can be assumed. This continues for 

GPD and for stationarity around a linear trend which is rejected for constant and rainy season 

threshold. Qiqihaer accepts stationarity for GEV, but rejects it for GPD with constant and rainy 

season threshold. We can conclude that the assumption that data are stationary is appropriate for 

Nanjing and Shantou. But there might be problems for Urumchi and also for Qiqihaer in some 

cases which reveals limitations of the EVT approach. 

Table 9. KPSS test statistics for GEV - monthly and half-yearly maxima and for GPD – constant and 

seasonal thresholds; critical values: 5%: constant 0.463, linear 0.146, 10%: constant 0.347, linear 0.119   

 Nanjing Shantou Urumchi Qiqihaer 

GEV Stat. 

around 

constant 

Stat. 

around 

linear 

trend  

Stat. 

around 

constant 

Stat. 

around 

linear 

trend  

Stat. 

around 

constant 

Stat. 

around 

linear 

trend  

Stat. 

around 

constant 

Stat. 

around 

linear 

trend  

Month 
0.124 0.018 0.032 0.024 1.576 0.253 0.124 0.068 

Half-year 
0.118 0.024 0.215 0.049 0.675 0.169 0.233 0.111 

GPD         

Constant 
0.263 0.025 

 

0.494 0.064 

 

0.154 0.154 0.484 0.250 

 Rainy 
0.066 0.059 0.194 0.060 0.129 0.129 0.457 0.122 

Dry 
0.179 0.090 0.080 0.071 0.146 0.027 0.049 0.041 

The p-values of MK test are showed in Table 10. When the p-value is larger than 0.05, the null 

hypotheses cannot be rejected that neither increasing nor decreasing trends exist in the 

exceedances. This is the case for almost all cities with only four exceptions, two for GPD with 

constant threshold from Nanjing and Shantou. The other two exceptions are from Urumchi with 

GEV where it is assumed that an increasing trend exists in the exceedances. 

Table 10. MK p-values (5%) for GEV - monthly and half-yearly maxima and for GPD – constant and 

seasonal thresholds 

 Nanjing Shantou Urumchi Qiqihaer 

GEV Test for 

positive 

trend 

Test for 

negative 

trend 

Test for 

positive 

trend 

Test for 

negative 

trend 

Test for 

positive 

trend 

Test for 

negative 

trend 

Test for 

positive 

trend 

Test 

for 

negativ

e trend 

Month 
0.193 0.807 0.247 0.753 <0.001 1.000 0.344 0.656 

Half-year 
0.191 0.809 0.632 0.358 0.009 0.991 0.243 0.757 

GPD         

Constant 
0.029 0.971 0.987 0.013 0.698 0.302 0.212 0.788 

Rainy 
0.326 0.674 0.859 0.151 0.736 0.264 0.118 0.882 

Dry 
0.898 0.102 0.558 0.450 0.138 0.862 0.825 0.175 

5. CONCLUSION  

This paper applied the Block Maxima model with GEV and the POT approach with GPD on 60 

years of daily rainfall data in four cities in China, Nanjing, Shantou, Urumchi and Qiqihaer. This 

includes the estimation of parameters using MLE techniques and the calculation of return levels 

for different return periods. The purpose is to support decision makers in these regions with 
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statistical knowledge about extreme precipitation that they can choose appropriate risk mitigating 

measures to reduce the damage caused by floods.   

The results from the parameter estimation show that the GPD approach is the preferable model as 

it has a better goodness-of-fit performance. There are fewer deviations compared with GEV, 

especially in the QQ plots. However for both models, there are several small deviations for 

considerably large rainfall. The obtained return levels show that the return period of a flood event 

in Nanjing is 20 to 50 years for GEV and 50 to 100 years for GPD. This takes place during the 

rainy season from April to November, but it is highly unlikely to observe a flood in dry season 

from December to March. Shantou experiences a flood event caused by heavy rain every 5 to 10 

years for GEV and every 10 to 20 years in rainy seasons for GPD. Every 50 years, it is further 

possible to see a flood during dry season. To sum up, extreme rainfall events can be predicted by 

the analysis of EVT. GEV and GPD are proper approaches to estimate return levels. This paper 

suggests using the GPD approach.  

The limitations of this study are first, that it considers extreme rainfall without removing clusters. 

The classical GEV and GPD models assume that the observations are independent, but fail to take 

account of dependency in climate data in reality. Thus, further studies should use observations 

after declustering. Furthermore, GEV and GPD models need to be refined because of the 

existence of seasonality. Besides that, the spatial homogeneity of extreme rainfall for a region is 

valuable to test, which will be useful for choosing the best model from GEV and GPD for each 

city in a region. Instead of MLE, other estimation techniques such as L-moments should be 

considered for this purpose. As the first results of this paper are promising, future research is 

needed to overcome those limitations. 
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