Geometric Progression in Operations Research (PERT) -

A Special Case Study

Dr. Kanduri Venkata Lakshmi Narasimhacharyulu

Associate Professor Department of Mathematics, Bapatla Engineering College, Bapatla-522101,India. kvlna@yahoo.com I.Pothuraju Assistant Professor Department of Mathematics Bapatla Engineering College, Bapatla, Andhra Pradesh, India. *im praju@yahoo.com*

Abstract: The present paper looks into the influence of Geometric Progression (G.P) which will whether endorse the network or not in a special case. The huge network is illustrated in a systematic way with 46 nodes and 60 activities. G.P is employed on a most likely time estimate among the three time estimates namely optimistic, most likely and pessimistic. The investigation has been done on the considered network. Some remarkable results are found. All float values are also computed. Critical path is identified and project analysis has been carried out. Periodical analysis is also established with standard normal distribution curves which are illustrated wherever necessary.

Keywords: Network, Time estimates, Float, Critical path, Normal distribution.

AMS Classification: 90-08, 90B10, 90C90

1. INTRODUCTION

Project networks are best representations of reality. The networks have some difficulty to control the realistic influences. In such case, no advantage will be occurred in their execution. In general networks used to predict and explain phenomena with a high degree of accuracy. Very large number of variables may be commanded to anticipate a phenomenon with consummate accuracy. The best way is to find the correct variable and right relationship between them.

The normal distribution curve and it's properties have been employed for the project with large size network. It necessitates all activities of the project. The three time estimates estimate an individual activity as optimistic time, pessimistic time and most probable time. These three time estimates indicate the measure of uncertainty likely to be encountered in performing an individual activity. The time estimates are mainly based on human observation, experience and knowledge of the estimator about the performance of the particular activity.

Levin and Kirkpatrick [3] explained about planning and control of a project with the aid of PERT and CPM in 1966.Wiest and Levy [4] looked into new ideas on Networks with management guide to PERT/CPM for research scholars in the area of operations research. PERT algorithm was established with various models by Billy E.Gillett [5] .He attempted different models of operations Research in 1979. S.D Sharma [6] discussed the applications of PERT&CPM techniques. K.V.L.N.Acharyulu et.al [1] analyzed some curious cases of PERT and Game theory problems.

The authors examined in this paper to classify whether Geometric progression in a peculiar case will assert a network or not. The Geometric progression is employed on most likely time estimate among the three time estimations. Project analysis is also accomplished. Total Float, Free float and Independent Float are calculated in the part of confirming the critical path. The standard normal distribution curves are illustrated with the aid of Mat lab wherever essential.

2. CONSTRUCTION OF NETWORK

A network is constructed with 46 nodes and 60 activities in a systematic way for investigating the influence of **Geometric Progression**. G.P is applied on most likely time estimate (m) in case (I) among the three estimates. Network does not accept any error and dummy activity.

Fig.1. Drawn Network having 46 nodes with 60 activities

3. PRELIMINARIES AND NOTATIONS

(i).TE= Earliest excepted completion time of event (TE)

Def: For the fixed value of j=TE(j)=Max[TE(i)+ET(i,j)] which ranges over all activities from i-j.

(ii).**TL**= Latest allowable event completion time (TL)

Def: For the fixed value of i=TL(i)=Min[TL(j)+ET(i,j)] which ranges over all activities from i-j.

(iii).**ET**= Excepted completion time of activity (I,J)

(iv). $\mathbf{a} = \text{Optimistic time estimate}$

(v). $\mathbf{m} =$ Most likely time estimate

(vi). \mathbf{b} = Pessimistic time estimate

(vii). \mathbf{ES} = Earliest start of an activity

(viii). \mathbf{EF} = Earliest finish of an activity

(ix). **LS** = Latest start of an activity

(x). LF = Latest finish of an activity

(xi). **TF** = Total Float

Def: TF of activity $i-j = LF_{i-j}-EF_{i-j}$ (or) $LS_{i-j}-ES_{i-j}$

(xii).**FF** = Free Float

Def: FF of activity i-j = TF - (TL-TE) of node j

(xiii). \mathbf{IF} = Independent Float

Def: IF of activity i-j = FF - (TL-TE) of node i

(xiv).SE=Slack event time

(xv).CPI=Critical Path Indicator

(xvi).**SCT**= Scheduled Time

(xvii). σ = Standard deviation of project length

4. MATERIAL AND METHODS

Step 1: Draw the project network completion time

Step 2: Compute the excepted duration of each activity by using the formula $ET = \frac{a+4m+b}{6}$.

From the time estimates a,m and p. Also calculate the excepted variance. σ^2 of each activity

Step 3: Calculate TE, TL

Step 4: Find Total Float, Free Float and Independent Float

Step 5: Find the critical path and identify the critical activities

Step 6: Compute project length which is a square root to sum of variance of all the critical activities.

Step 7: From the standard normal variable $z = \frac{SCT - ET}{\sigma}$, Where SCT is scheduled Completion time of event, σ =standard deviation of project length. Using the standard normal

Completion time of event, σ =standard deviation of project length. Using the standard normal curve, we can estimate the probability of completing project within specified time.

5. RESULTS

By using CPM and PERT algorithms on the Network, the critical path is identified from the scientific computations of the following tables from Table-1 to Table-6.The tables consists of all activities, Time estimates, ET, Varience.ES, EF, LS, LF and all Float values. The Critical path indicator provides at each critical Activity in each table.

Activity]	Time Estimat	es	ЕТ	σ^2	Earli	iest[E]	Late	st[L]	TF	F F	IF	C P
	a	m	b			ES	EF	LS	LF				Ι
											_		
12	1	1.41	2	1.44	0.02	0	1.442	60.03	61.47	60.03	0	0	
		4		2	7			6	8	6			
13	3	3.46	4	3.47	0.02	0	3.473	0	3.473	0	0	0	*
		4		3	7								
24	5	5.47	6	5.48	0.02	1.44	6.926	89.48	94.96	88.04	0	-	
		7		4	7	2		4	8	2		60.036	
25	7	7.48	8	7.48	0.02	1.44	8.93	61.47	68.96	60.03	0	-	
		3		8	7	2		8	6	6		60.036	
36	9	9.48	10	9.49	0.02	3.47	12.96	31.47	40.96	28.00	0	0	
		6			7	3	3	5	5	2			

Lable 1. Scientific computations of 1 thst two Levels
--

 Table-2. Scientific Computations of Third Level

Activity	1	Time Estimate	s	ЕТ	σ^2	Earli	est[E]	Late	st[L]	TF	F F	IF
	a	m	b			ES	EF	LS	LF		-	
48	1	13.49	1	13.49	0.02	6.926	20.41	106.96	120.46	100.04	0	-
	3		4	3	7		9	9	2	3		88.0
												42
49	1	15.49	1	15.49	0.02	6.926	22.42	94.968	110.46	88.042	0	-
	5	1	6	4	7				2			88.0
. 10		1 . 40		1 . 10		0.00		00.070	00.460		0	42
510	1	17.49	1	17.49	0.02	8.93	26.42	80.968	98.462	72.038	0	-
	7	2	8	4	1		4					60.0 26
5 11	1	10.40	2	10.40	0.02	0.02	20 42	(0.0((99 4(1	(0.02(0	30
511	1	19.49		19.49	0.02	0.95	20.42	08.900	00.401	00.030	U	
	,	5	U	3	,		3					36
612	2	21.49	2	21.49	0.02	12.96	34.45	53.265	74.461	40.002	0	-
•	1	4	2	6	7	3	9	00.200	/	101002	v	28.0
				-								02
613	2	23.49	2	23.49	0.02	12.96	36.45	40.965	64.461	28.002	0	-
	3	4	4	6	7	3	9					28.0
												02
714	2	25.49	2	25.49	0.02	14.96	40.46	26.965	52.461	12	0	0
	5	5	6	6	7	5	1					
715	2	27.49	2	27.49	0.02	14.96	42.46	14.965	42.461	0	0	0
	7	5	8	6	7	5	1					

Table-3. Scientif	ic Computations	of Fourth Level
-------------------	-----------------	-----------------

Activity	l	Time Estimate	s	ЕТ	σ^2	Earliest[E]		Late	st[L]	TF	F F	IF
	a	m	b			ES	EF	LS	LF			
816	2 9	29.49 5	3 0	29.49 6	0.02 7	20.41 9	49.915	124.46 3	153.95 9	104.04 4	0	- 100 .04 3
817	3 1	31.49 6	32	31.49 7	0.02 7	20.41 9	51.916	120.46 2	151.95 9	100.04 3	0	- 100 .04 3

Geometric	Progression	in C) perations	Research	(PERT)	-A	Special	Case	Study
					()				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0 10	2	22 40	2	22.40	0.02	22.42	55 017	114 46	147.05	02 042	Δ	
910	3	55.49	3	55.49	0.02	22.42	55.917	114.40	147.95	92.042	U	-
	3	0	4	1	1			2	9			88.
												042
919	3	35.49	3	35.49	0.02	22.42	57.917	110.46	145.95	88.042	0	-
	5	6	6	7	7			2	9			88.
												042
1020	3	37.49	3	37.49	0.02	26.42	63.921	102.46	139.95	76.038	0	-
	7	6	8	7	7	4		2	9			72.
		-										038
1021	3	39.49	4	39.49	0.02	26.42	65.921	98 462	137.95	72.038	0	
10 21	ğ	6	0	7	7	4	000721	201102	0	12:000	v	72
		U	v	,	,	-			,			038
11 22	4	<i>41</i> 40	4	<i>A</i> 1 <i>A</i> 0	0.02	28.42	60.022	02 462	122.05	64 027	0	030
1122	1	41.49	4	41.49	0.02	20.42	09.922	92.402	155.95	04.037	U	-
	I	0	2	/	/	5			9			00.
11.00	_	12.10		12.10	0.00		=1.000	00.474	101.05	(0.0.2)	0	036
1123	4	43.49	4	43.49	0.02	28.42	71.923	88.461	131.95	60.036	0	-
	3	7	4	8	7	5			9			60.
												036
1224	4	45.49	4	45.49	0.02	34.45	79.957	78.461	123.95	44.002	0	-
	5	7	6	8	7	9			9			40.
												002
1225	4	47.49	4	47.49	0.02	34.45	81.957	74.459	121.95	40	0	-
	7	7	8	8	7	9			7			40.
		-	-	-	-	-			-			002
1326	4	49.49	5	49.49	0.02	36.45	85.957	68.459	117.95	32	0	-
10 10	9	7	0	8	7	9	001201	001102	7	-	Ŭ	28
		,	v	0	,	,			,			20.
12 27	5	51 40	5	51.40	0.02	26.45	87.057	64 461	115.05	28.002	0	002
1327	3	51.49	5	51.49 0	0.02	30.45	07.957	04.401	115.95	20.002	U	
	I	/	4	ð	/	9			9			28.
	_		_						100.05			002
1428	5	53.49	5	53.49	0.02	40.46	93.959	56.461	109.95	16	0	-12
	3	7	4	8	7	1			9			
1429	5	55.49	5	55.49	0.02	40.46	95.959	52.461	107.95	12	0	-12
	5	7	6	8	7	1			9			
1530	5	57.49	5	57.49	0.02	42.46	99.959	46.461	103.95	4	0	0
	7	7	8	8	7	1			9			
1531	5	59.49	6	59.49	0.02	42.46	101.95	42.461	101.95	0	0	0
	9	7	0	8	7	1	9		9			

 Table-4. Scientific Computations of Fifth Level

Activit		Time		ЕТ	σ^2	Earli	est[E]	Late	st[L]	TF	FF	IF
У	ł	estimate	S									
	а	m	b			ES	EF	LS	LF			
16-32	6	61.49	6	61.49	0.02	49.91	111.4	153.9	215.4	104.0	4.00	-
	1	7	2	8	7	5	13	59	57	44	1	100.0
												43
17-32	6	63.49	6	63.49	0.02	51.91	115.4	151.9	215.4	100.0	0	-
	3	8	4	8	7	6	14	59	57	43		100.0
												43
18-33	6	65.49	6	65.49	0.02	55.91	121.4	147.9	213.4	92.04	4	-
	5	8	6	8	7	7	15	59	57	2		88.04
												2
19-33	6	67.49	6	67.49	0.02	57.91	125.4	145.9	213.4	88.04	0	-
	7	8	8	8	7	7	15	59	57	2		88.04
												2
20-34	6	69.49	7	69.49	0.02	63.92	133.4	139.9	209.4	76.03	4	-
	9	8	0	8	7	1	19	59	57	8		72.03
												8
21-34	7	71.49	7	71.49	0.02	65.92	137.4	137.9	209.4	72.03	0	-

Kanduri Venkata Lakshmi Narasimhacharyulu & I.Pothuraju

	1	8	2	8	7	1	19	59	57	8		72.03
												8
22-35	7	73.49	7	73.49	0.02	69.92	143.4	133.9	207.4	64.03	4.00	-
	3	8	4	8	7	2	2	59	57	7	1	60.03
												6
23-35	7	75.49	7	75.49	0.02	71.92	147.4	131.9	207.4	60.03	0	-
	5	8	6	8	7	3	21	59	57	6		60.03
												6
24-36	7	77.49	7	77.49	0.02	79.95	157.4	123.9	201.4	44.00	4	-
	7	8	8	8	7	7	55	59	57	2		40.00
												2
25-36	7	79.49	8	79.49	0.02	81.95	161.4	121.9	201.4	40.00	0	-
	9	8	0	8	7	7	55	59	57	2		40.00
												2
26-37	8	81.49	8	81.49	0.02	85.95	167.4	117.9	199.4	32.00	4	-
	1	8	2	8	7	7	55	59	57	2		28.00
												2
27-37	8	83.49	8	83.49	0.02	87.95	171.4	115.9	199.4	28.00	0	-
	3	8	4	8	7	7	55	59	57	2		28.00
												2
28-38	8	85.49	8	85.49	0.02	93.95	179.4	109.9	195.4	16.00	4.00	-12
	5	8	6	8	7	1	49	59	57	8	8	
29-38	8	87.49	8	87.49	0.02	95.95	183.4	107.9	195.4	12	0	-12
	7	8	8	8	7	9	57	59	57			
30-39	8	89.49	9	89.49	0.02	99.95	189.4	103.9	193.4	4	4	0
	9	8	0	8	7	9	57	59	57			
31-39	9	91.49	9	91.49	0.02	101.9	193.4	101.9	193.4	0	0	0
	1	8	2	8	7	59	57	59	57			

Table-5. Scientific Computations of Sixth Level

					1					1		1
Activi	Tin	ne Estim	ates	ET	σ^2	Earli	est[E]	Late	st[L]	TF	FF	IF
ty	a	m	b			ES	EF	LS	LF			
32-40	93	93.49	94	93.49	0.02	115.4	208.9	215.4	308.9	100.0	12.0	-
		8		8	7	14	12	57	55	43	01	88.0
												42
33-40	95	95.49	96	95.49	0.02	125.4	220.9	213.4	308.9	88.04	0	-
		8		8	7	15	13	57	55	2		88.0
												42
34-41	97	97.49	98	97.49	0.02	137.4	234.9	209.4	306.9	72.03	12.0	-
		8		8	7	19	17	57	55	8	02	60.0
												36
35-41	99	99.49	10	99.49	0.02	147.4	246.9	207.4	306.9	60.03	0	-
		8	0	8	7	21	19	57	55	6		60.0
												36
36-42	10	101.4	10	101.4	0.02	161.4	262.9	201.4	302.9	40.00	12	-
	1	98	2	98	7	55	53	57	55	2		28.0
												02
37-42	10	103.4	10	103.4	0.02	171.4	274.9	199.4	302.9	28.00	0	-
	3	98	4	98	7	55	53	57	55	2		28.0
												02
38-43	10	105.4	10	105.4	0.02	183.4	288.9	195.4	300.9	12	12	0
	5	98	6	98	7	57	55	57	55			
39-43	10	107.4	10	107.4	0.02	193.4	300.9	193.4	300.9	0	0	0
	7	98	8	98	7	57	55	57	55			

 Table-6. Scientific Computations of Seventh Level

Activ	7 Tin	ne Estim	ates	ЕТ	σ^2	Earli	est[E]	Late	st[L]	TF	FF	IF	С
ity	а	m	b		U	ES	EF	LS	LF				Р
													Ι
40-44	10	109.4	11	109.4	0.0	220.9	330.4	308.9	418.4	88.0	28.0	-	
	9	98	0	98	27	13	11	55	53	42	06	60.03	
												6	
41-44	11	111.4	11	111.4	0.0	246.9	358.4	306.9	418.4	60.0	0	-	
	1	98	2	98	27	19	17	55	53	36		60.03	
												6	
42-45	5 11	113.4	11	113.4	0.0	274.9	388.4	302.9	416.4	28.0	28.0	0	
	3	98	4	98	27	53	51	55	53	02	02		
43-45	5 11	115.4	11	115.4	0.0	300.9	416.4	300.9	416.4	0	0	0	*
	5	98	6	98	27	55	53	55	53				
44-46	5 11	117.4	11	117.4	0.0	358.4	475.9	418.4	535.9	60.0	60.0	0	
	7	98	8	98	27	17	15	53	51	36	36		
45-46	5 11	119.4	12	119.4	0.0	416.4	535.9	416.4	535.9	0	0	0	*
	9	98	0	8	27	53	51	53	51				

Critical path is obtained as below

3.473	11.492	27.496	59.498	91.498	107.498	115.498	119.498
1	3	7	15	31	39	43	45 46

Project Length is defined as $\sqrt{\text{Sum of Variances of each Critical activity}}$

i.e Project Length = $\sqrt{0.027 + 0.027$

The values of TE, TL and SE corresponding to every node are given in table (3).

The slack event time may be positive, negative or zero.

It is also observed that the values of slack event time vanish at each critical activity.

Slack event time is defined as the amount of time in which the event can be retarded with out involving the scheduled completion time for the project. Any activity on the critical path necessitates time in excess of its expected completion time and detains the project completion consequently.

T٤	ıbl	e-7

Nodes	ТЕ	TL	SE	Nodes	ТЕ	TL	SE
1	0	0	0	24	79.957	123.959	44.002
2	1.442	61.478	60.036	25	81.957	121.959	40.002
3	3.473	3.473	0	26	85.957	117.959	32.002
4	6.926	94.968	88.042	27	87.957	115.959	28.002
5	8.93	68.966	60.036	28	93.951	109.959	16.008
6	12.963	40.965	28.002	29	95.959	107.959	12
7	14.965	14.965	0	30	99.959	103.959	4
8	20.419	120.462	100.043	31	101.959	101.959	0
9	22.42	110.462	88.042	32	115.414	215.457	100.043
10	26.424	98.462	72.038	33	125.415	213.457	88.042
11	28.425	88.461	60.036	34	137.419	209.457	72.038
12	34.459	74.461	40.002	35	147.421	207.457	60.036
13	36.459	64.461	28.002	36	161.455	201.457	40.002
14	40.461	52.461	12	37	171.455	199.457	28.002
15	42.461	42.461	0	38	183.457	195.457	12
16	49.915	153.959	104.044	39	193.457	193.457	0

17	51.916	151.959	100.043	40	220.913	308.955	88.042
18	55.917	147.959	92.042	41	246.919	306.955	60.036
19	57.917	145.959	88.042	42	274.953	302.955	28.002
20	63.921	139.959	76.038	43	300.955	300.955	0
21	65.921	137.959	72.038	44	358.417	418.453	60.036
22	69.922	133.959	64.037	45	416.453	416.453	0
23	71.923	131.959	60.036	46	535.951	535.951	0

6. PROJECT ANALASIS

Project analysis is carried out with specific schedule times and the standard normal variables are identified in the possible range of probability from o to 1. The percentage of possibilities of completion of the Project are obtained and specified in the following Table-8. The graphs are also illustrated.

Table-8

SCT	ETC	Z	Probability	Percentage of Possibility (%)
534	535.951	-4.918	0	0
535	535.951	-2.046	0.2068	20.6
536	535.951	0.105	0.53983	53.9
537	535.951	2.257	0.98778	98.7
538	535.951	4.409	1	100

The derived Standard Normal Curves are shown from Fig.2-Fig.6

Fig.2

Fig.5

Kanduri Venkata Lakshmi Narasimhacharyulu & I.Pothuraju

7. CONCLUSIONS

The following conclusions are incurred in this investigation of scientific study.

- (i).In Critical Path
- (a).It is noted that all Total Float values of Critical activities are vanished.

(b). The value of Slack event of each node in critical path has become zero.

(c). TE and TL are same at each node in critical path.

(ii).G.P sustains consistently the Network even though the network has large size.

(iii).Variances are identical at any activity of the Network.

(iv). The case in which G.P is conceived on most likely time estimate, the expected completion time of successive activity is gradually increased.

- (v). The influence of G.P in the Network are identified as
- (a).G.P supports accurately only when SCT is greater than ETC, except SCT value is nearer to ETC.
- (b).G.P does not support effectively when SCT is less than or equal to ETC.
- (c). Standard Normal Distribution curves illustrate the percentage of possibilities of the Project.

REFERENCES

- [1] K.V.L.N.Acharyulu and Maddi.N.Murali Krishna,(2013). Some Remarkable Results in Row and Column both Dominance Game with Brown's Algorithm, International Journal of Mathematics and Computer Applications Research,Vol. 3, No.1, pp.139-150.
- [2] K.V.L.N.Acharyulu and Maddi.N.Murali Krishna, (2013). A Scientific Computation On A Peculiar Case of Game Theory in Operations Research, International Journal of Computer Science Engineering and Information Technology Research, Vol. 3, No.1, pp.175-190.
- [3] Levin, R., and C.A. Krik Patrick,(1966).Planning and control with PERT/CPM, McGraw-Hill Book company, New York.
- [4] Wiest, J.D., and F-Levy,(1969). A management Guide to PERT/CPM, Patrick-mall, Inc. Engle Wood Cliffs, N.J.
- [5] Billy E. Gillett,(1979).Introduction to operations Research, Tata McGraw-Hill Publishing Company limited, PP.434-453,New York.
- [6] S.D.Sharma,(1999). Operations Research, PP.4.300-4.355, Kedar Nath Ram Nath & Co.

AUTHORS' BIOGRAPHY

Kanduri Venkata Lakshmi Narasimhacharyulu Who is known as Dr.K.V.L.N.Acharyulu is working sas Associate Professor in the Department of Mathematics, Bapatla Engineering College, Bapatla which is a prestigious institution of Andhra Pradesh. He took his M.Phil. Degree in Mathematics from the University of Madras and stood in first Rank,R.K.M. Vivekananda College,Chennai. Nearly for the last thirteen years he is rendering his services to the students and he is applauded by one and all for his best way of teaching. He has participated in some seminars and presented his papers on various topics. More than 70 articles were published in various International high impact factor Journals. He obtained his Ph.D from ANU

under the able guidance of Prof. N.Ch.Pattabhi Ramacharyulu,NIT,Warangal. He authored three books. He is a Member of Various Professional Bodies and created three world records in research field. He received so many awards and rewards for his research excellency in the field of Mathematics.

I.Pothuraju, He is working as Assistant professor in Department of Mathematics, Bapatla Engineering College. He has two years of teaching experience. He is doing his M.phil under the guidance of Dr.K.V.L.N.Acharyulu.He did M.Sc(Mathematics) in Bapatla Engineering College. He obtained MBA from Pydah College, Andhra University. He completed his B.Sc(M.P.C) in Bapatla College of Arts & Science. He has a zeal to invent new findings in Mathematics.