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Abstract: The partial functions under disjoint-domain sums and functional composition do not form a
field, and thus conventional linear algebra is not applicable. However they can be regarded as a so-ring,
an algebraic structure possessing a natural partial ordering, an infinitary partial addition and a binary
multiplication, subject to a set of axioms. In this paper the notions of prime and semiprime bi-ideals in so-
rings are introduced and obtained some characteristics of prime and semiprime bi-ideals of so-rings.
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1. INTRODUCTION

The study of pfn(D, D) (the set of all partial functions of a set D to itself), Mfn(D, D) (the set
of all multi functions of a set D to itself) and Mset(D, D) (the set of all total functions of a set D

to the set of all finite multi sets of D) play an important role in the theory of computer science,
and to abstract these structures Manes and Benson[5] introduced the notion of sum ordered partial
semirings(so-rings). Motivated by the work done in partially-additive semantics by Arbib, Manes
[3] and in the development of matrix theory of so-rings by Martha E. Streenstrup[6]. G. V. S.
Acharyulu[1] in 1992 studied conditions under which an arbitrary so-ring becomes a pfn(D, D),

Mfn(D, D) and Mset(D, D). Continuing this study, P. V. Srinivasa Rao[8] in 2011 developed

the ideal theory for so-rings. In this paper we introduce the notions of prime and semiprime bi-
ideals and observe the characteristics of prime radical interms of semiprime bi-ideals.
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2. PRELIMINARIES

In this section we collect important definitions, results and examples which were already proved
for our use in the next sections.

2.1 Definition. [5] A partial monoid is a pair (M,X) where M is a non empty set and Y is a
partial addition defined on some, but not necessarily all families (x; :i € 1) in M subject to the
following axioms:

(1)Unary Sum Axiom: If (x,:iel) is a one element family in M and I = { j }, then
D (% :iel) is defined and equals X .

(2) Partition - Associativity Axiom: If (x; :iel) isa familyin M and If (I;:jeJ) isa
partition of |, then (Xx; i € I) is summable if and only if (x; ;i€ I;) is summable for every
inJand (D (x :iel;): jed)is summable. We  write Y (xiel)=

YO iel)jeld).

2.2 Definition. [5] The sum ordering < on a partial monoid (M,X) is the binary relation < such
that x <y if and only if there existsa hin M suchthaty =x + h, forx,ye M.

2.3 Definition. [5] A partial semiring is a quadruple (R,Z,-1), Where (R,X) is a partial monoid
with partial addition)’, (R,-1) is a monoid with multiplicative operation ‘-’ and unit ‘1°, and the
additive and multiplicative structures obey the following distributive laws:

If > (x :iel) isdefined in R, then forall y in R, > (y-x iel) and > (x -y:iel) are
defined and y-[> x1=2 (y-x).[2. %1y =2 (xy).
2.4 Definition. [5] A sum-ordered partial semiring (or so-ring for short), is a partial semiring in

which the sum ordering is a partial ordering.

2.5 Definition. [1] Let R be so-ring. A subset N of R is said to be an ideal of R if the following are
satisfied:

(1) if (X, ;i€ l)isasummable family in R and x;e N for every ie | then x;e N,
(I) ifx<yandyeNthenxeN, and
(1) if xe Nand reR then xr, rxe N.

2.6 Definition. [2] A subset N of a so-ring R is said to be a bi-ideal of R if the following are
satisfied

(By) if (X; i1 € 1) isasummable family in R and x;e N for every i | then z X; €N,

(By) ifx<yandyeN then xe N, and
(B3) ifx,yeNand reR then xrye N.

Note that every ideal is a bi-ideal. The following is an example of a so-ring in which bi-ideal is
not an ideal.

2.7 Example. [2] Consider the so-ring N=Nu {0} the set of all natural numbers with ‘0’.Take R

a b
= (L d}/a,b,c,d ENJ . Then R is a so-ring with respect to matrix addition and matrix

x 0
multiplication. Now B = {O 0}/x € N} is a bi-ideal but not an ideal of R.
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2.8 Example. [2] Consider the so-ring R = {0, u, v, X, y, 1} with ¥ defined on R by

2=

J

X if x, =0 Vi=]j, forsome j,
undefined, otherwise.

And ‘-’ defined by the following table:

0 u Vv X y 1
0 0 0 0 0 0 0
u 0 u 0 0 0 u
v 0 0 v 0 0 v
X 0 0 0 0 0 X
y 0 0 0 0 0 y
1 0 u Vv X y 1

Then for bi-ideals {0,x,y}, {0,u,x} of R, {0,x,y} N{0,u,x}={0,x} whereas {0,x,y}{0,u,x} = {0}.
2.9 Example. [2] Consider the so-ring R= {0, a, b, c,d 1} with Y on R defined by

X;. if X; =0Vi=# j, for some j,

in: d, if Xj=a,% =b or x;=bx =c for some jkx =0 Viz]jk,
i undefined, otherwise.

And ‘-’ defined by
0, if x=ly=l
x-y=9X%, |If y =1,
y if x=1.
Then the bi-ideals of R are {0}, {0, a}, {0, b}, {0, c}, {0, a, b, ¢, d}, R. Now {0, a}u {0,
b}={0, a, b} is not a bi-ideal of R, since a + b =d whichisnotin {0, a, b}.

2.10 Definition. [8] A proper ideal P of so-ring R is said to be prime if and only if for any
idealsABof R, ABcP=AcPo BcP.

2.11 Definition. [8] An element a of a partial semiring R is said to be multiplicatively regular if
and only if there exists a b € R such that aba=a.

2.12 Definition.[8] A partial semiring R is said to be multiplicatively regular if and only if each
element of R is multiplicatively regular.

3. PRIME BI-IDEALS

In this section, we define a prime bi-ideal of a so-ring R and characterize the prime radical interms
of prime bi-ideals of R.

3.1 Definition. Let R be a so-ring and a in R. Then the principal ideal generated by a is

<a>= {xER/xSZa+ara, aER}

3.2 Definition. A proper bi-ideal of a so-ring R is said to be prime if and only if for any bi-ideals
A, Bof R,ARB — PimpliesA c PorB c P.
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3.3 Example. Consider the so-ring R = [0,1]. Since for any bi-ideals [0, x], [0, y] and [0, z] of R,
[0, X]R[O, y] <O, z] implies that [0, X] <[O, z] or [0, y] <0, z], every bi-ideal of R is a prime bi-
ideal of R.

3.4 Theorem. If P is a proper bi-ideal of a complete so-ring R then the following are
equivalent:
(i) Pis prime, and

(ii){arb/reR} S P=a€PorbeP

Proof: (i) = (i ): Suppose P is prime and take P'= arb/reR .Suppose P’ < P and take

A=<a> B=<b> Let xe ARB Then x< ) arb; fora e<a > bie<b> reR =For

any  iel, a < Za+ as,a and b, < Zb +bs,b where s;,  S,eR.

=x<Y (Y a+as,a)r (3 b+bs,b)

= Z[(ZI: a)r, (. b) + (D a)r, (bs,b) + (as,a)r, (D _b) + (as,a)r, (bs,b)]
= i[ZZanb + Y a(rbs,)b+ Y a(s,ar, )b +a(s,arbs, )b]

- iZZarib +3 3 a(rbs, )b+ Y Y a(sar )b+ Y a(sarbs, b.

Since P'cP and P is a bi-ideal ofR, we have xeP. Therefore
ARBcP=A=<a>cPorB=<b>cP.HenceacP orbeP.
(ii) =(i): Suppose P'= arb/reR cP—=aecP or beP. Let A B be bi-ideals of R such

that ARBc P and suppose that Az P. Then IXxeA>x¢P. For any yeB,

{xry/reR}c ARBc P. >XxeP or yeP. = yePVyeB.Therefore B< P. Hence P
is a prime ideal.

3.5 Definition. A so-ring R is said to be prime if and only if < 0 > is a prime bi-ideal.
Pfn(D, D), Mfn(D, D) and Mset(D, D)are prime so-rings for any non empty set D. It may be
noted that the so-ring R considered in the example 2.8 is not a prime so-ring.

3.6 Lemma. A so-ring R is prime if and only if 10 and for each pair of nonzero elements
a,b e R, there exists r in R such that arb = 0.

3.7 Definition. A non empty subset A of a so-ring R is said to be an m-system if and only if for
any a,b e A thereexists reRs>arbe A

3.8 Example. Consider the so-ring R as in the example 2.8. Then set 0,u,v is an m-system of
R.

3.9 Theorem. A proper bi-ideal P of a complete so-ring R is prime if and only if R\ P is an
m-system.

Proof: A bi-ideal P of R is prime << arb/reR <P then acP or be P (Since by the

theorem 34 agP and bgP then arb/reR ¢ P < for every
a,beR\P,areR>arbe R\P < R\P isan m-system.

3.10 Theorem. A bi-ideal B of a so-ring R is prime if and only if for any right ideal M and left
ideal N of R. MN < B implies M < B or N < B.
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Proof: LetB be a prime bi-ideal of Rand MN c B. Suppose M & B. Since
MRNc MNc B andB is prime, M c B or Nc B. = N < B. Conversely suppose that
MN < B implies M < B or N < B for any right ideal M of R and any left ideal N of R.
Let P,Q be any two bi-ideals of R such that PRQc B. Now PRand RQ are right and left
ideals of R. Since (PR)(RQ)c PRQc B, PRcB or RQcB. =PcB or QcB.
Hence B is prime.

3.11 Theorem. A prime bi-ideal of a so- ring R is a prime one-sided ideal of R.

Proof: Let B be a prime bi-ideal of a so-ring R. Since Bis a bi- ideal of R,
(BR)(RB) — BRBc B where BR is a right ideal and RB a left ideal of R. By the theorem
3.10, we have that BR< B or RB< B . Hence B is a either right or left ideal of R .

3.12 Definition. Let B be any bi-ideal of a so-ring R. Then define L(B) and H(B) as
L(B)= xeB/RxcB and H(B)= yeL(B)/yRcL(B) .

Note that if x e L(B) and ze R, then zxe Rxc B and Rzx< RRxc Rxc B, L(B) isa
left ideal of R and L(B) = B. Also H(B) < L(B).

3.13 Theorem. If Bis any bi-ideal of a so-ring R, then H(B) is the (unique ) largest two sided
ideal of R contained in B.

Proof: Since L(B)< B and H(B) < L(B), we have that H(B) < B. Now we prove that
H(B) is a two sided ideal of R: Let xe H(B) and r e R. Then Xe B and x e L(B).
= Rxc B and xRc L(B). = rxeRxc Band hence rxeB. Since Rrxc Rxc Band
xr € XR c L(B), xr,rx e L(B) . Now XrR < xR < L(B) and
(X)R < RXRc RL(B) < L(B) . Hence xr,rx € H(B). Therefore H(B) is a two sided ideal
of R contained in B. Now we prove that H(B)is largest: Let S be any ideal of R such that
ScB,andlet u beanelement of S. Then ue B and Ruc S < B.Hence S < L(B). Also
uel(B) and URc Sc L(B).=ueH(B) and hence S < H(B). Hence the theorem.

3.14 Theorem. Let B be a prime bi-ideal of a so-ring R. Then H(B) is a prime ideal of R .

Proof: Let B be a prime bi-ideal and let XY < H(B) for any ideals X and Y of R. Then
XY < B. By the theorem 3.10, X < B or Y < B. Then by the theorem 3.13, H(B)is the
largest ideal contained in B. Hence X c H(B) or Y < H(B). Hence H(B) is a prime ideal
ofR.

3.15 Definition. Let R be a so-ring. Then the prime radical B( R )of R is the intersection of all
prime ideals of R.

3.16 Theorem. Every prime bi-ideal | of a complete so-ring R contains a minimal prime bi-
ideal.

Proof: Take C={ P / Pis a prime bi-ideal of Rand P < | }. Then | € C and hence (C ,<)

is a non empty partial ordered set. Let {H; /i € A} be a descending chain of prime bi-ideals of
R contained in | . Then H = ﬂHi is a bi-ideal of R such that H — | .To prove H is prime,
ieA

let a,be R such that{arb/r e R} < H and suppose ag H. Then a¢ H, for some ke A.

Since agH,, arb/reR cH, and H is prime, we have be H, . Now Vi<k, H, c H,

KI
and hence beH,Vi<k,ieA. Now Vi>k,H,cH, and hence agH,. Since
{arb/reR}c H,, H, isprimeand a¢ H,,Wehave be H,Vi>k,ieA. =>beH,VieA
and hence beH:ﬂHi.Hence H is a prime bi-ideal of R. Thus H € C andH s a lower

ieA
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bound of {H, /i€ A} in C. Then by Zorn’s lemma, C has a minimal element. Hence the
theorem.

3.17 Corollary. The prime radical B(R) of a so-ring R is the intersection of all prime bi-ideals
of R.

Proof: Clearly { P;/ P;is a prime ideal of R } < { B;/B;is a prime bi-ideal of R }.
= ({P;/Pjisaprimeideal of R} () {B;/B;isa prime bi-ideal of R }.

= B(R) 2N {Bi/B;is aprime bi-ideal of R }. We have, if B; is a prime bi-ideal of R then H
( Bi) is a prime ideal of R. Then { H(B;) / H(B;) is a prime ideal of R } —{ P;/ P;is a prime
ideal of R }.

=B(R)= N {P;/Pjis a prime ideal of R } < (1{ H(B;)/ H(B;) is a prime ideal of R }c= 1{
Bi/ B; is a prime bi-ideal of R }. Hence B(R) = (1{ B;/ B;is a prime bi-ideal of R }.

4. SEMIPRIME BI-IDEALS

In this section we define semiprime bi-ideal of a so-ring R and characterize the prime radical
interms of semiprime bi-ideals of R.

4.1 Definition. A proper bi-ideal | of a so-ring R is said to be semiprime if and only if for any bi-
ideal Hof R, HRHC | impliesHCI.

4.2 Example. Let (R,Z,-) be the so-ring as in the example 3.3. Then for any X € R, every ideal
[0, X] is semiprime.

Clearly every prime bi-ideal is semiprime. The following is an example of so-ring R in which a
semiprime bi-ideal is not a prime bi-ideal.

4.3 Example. Let (R,Z,-) be a so-ring as in the example 2.8. For the bi-ideals { O, u }, {0, v }
and {0,x,y} of R, {0, u} R {0 v}={03}c={0xvy}. But {0, u}z{0,x,y} and
{0, v}z {0, x,y}. Hence {0, X, y} is not prime. However the bi-ideal {0, X, y } is semiprime.

4.4Theorem. If | isa bi-ideal of a complete so-ring R then the following are equivalent.

(1) I issemiprime.
(ii)fara/lreR}cl < ael.

Proof: (i)=>(ii): Suppose | is semiprime and take P’ ={ara/r € R}.

If aelthen clearly P’ |. Suppose P'c | and take A=<a>. Let Xe ARA. Then
x<Y arafor a e<a>reRViel. = for any iel,aiSZa+asa,SGR.
i

= X< Z(Za+ asa)r;(D_a+asa)
= Z (O ) (O a)+ (O a)r (asa) + (asa)r, (O a) + (asa)r, (asa)].

= Z[ZZ ara+ Y a(ras)a+ » a(sar)a+a(saras)al.

:ZzzaﬁanZza(rias)a+ZZa(sari)a+Za(sarias)a. Since P’ 1 and | isa

bi-ideal, Xe |l .= ARAc|. => A=<a>c| andhence ael.
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(ii) =(i): Suppose P'={ara/reR}c |l <aecl. Let A be a hi-ideal of Rsuch that
ARAcC | and ac A. Then {ara/r e R} < ARAc |. =ael and hence Ac | . Hence |
is semiprime.

4.5 Definition. A non empty subset A of a so-ring Ris a p-system if and only if for any
aeAdreR>araceA.

Clearly every m-system is a p-system. The following is an example of a so-ring R in which a p-
system is not an m-system.

4.6 Example. Let (R,Z,) be the so-ring as in the example 2.8. Then the sub set {u,v} of R isa
p-system. But it is not an m-system, since for u,v €{u,v} and forany r e R, urv=0¢{u,v}.

4.7 Theorem. A proper bi-ideal | of a complete so-ring R is semiprime if and only if R\ | isa
p-system.

Proof: A bi-ideal P of R is semiprime < {ara/r € R} — P then a € P (-.- by theorem 4.4)

< agPthen{ara/re R}z P <forany ac R\P,are R>araeR\P
< R\ P isap-system.

4.8 Theorem. Let B be a semiprime bi-ideal of a so- ring R. Then L> < B(or M? < B)
implies L= B (or M < B) for any left ideal L (or rightideal M) of R.

Proof: Let Lbe a left ideal of Rsuch that L> — B. Suppose L B. Then there exists
XelLaxgB. = XRXc LRXxc LL< B. Since B is semiprime, X € B, a contradiction.
Hence L < B . Hence the theorem.

4.9 Theorem. Let B be a semiprime bi-ideal of a so-ring R . Then H(B) is a semiprime ideal of
R.

Proof: Let B be a semiprime bi-ideal of R and suppose X < H(B) for any ideal X of R.

Then X* c B. —>By the above theorem, X < B. From the theorem 3.13, it follows that
X < H(B).Hence H(B) issemiprime ideal of R.

4.10 Corollary. The prime radical B( R) of a so-ring R is the intersection of all the semiprime
bi-ideals of R .

Proof: We have B(R) = (1 { B/ B; is a prime bi-ideal of R }, we know that every prime bi-ideal
is semiprime bi-ideal of R. = { B;/ B; is a prime bi-ideal of R } —{S;/ S; is semiprime bi-ideal
of R}. = {Bi/B;isaprime bi-ideal of R } ©{S;i/S; is a semiprime bi-ideal of R }.

= B(R) 2 {Si/S;is a semiprime bi-ideal of R }. If S; is a semiprime bi-ideal of R then H(S))
is a semiprime ideal. ={H(S;) / H(S)) is a semiprime ideal of R} {Xi/ X; semiprime ideal of R
}.= B(R) = N{X;/ X; semiprime ideal of R}< N{H(S;) / H(S;) is a semiprime ideal of R}
< N{S;/ S; is semiprime bi-ideal of R }. Hence B(R) of aso-ring R is the intersection of all
the semiprime bi-ideals of R.

4.11 Theorem. A partial semiring R is multiplicatively regular if and only if every bi-ideal in R
is semi prime.

Proof: Let R be a multiplicatively regular partial semiring and B be any bi-ideal of R . Suppose
XRx < B for X e R. Since R is regular, there exists r € R 3> X = Xrx. But Xrx € XRX. Hence
X e XRxc B and so B is semiprime. Conversely suppose that every bi-
ideal of Ris semiprime. Let r € R and consider B=rRr. Then B is a bi-ideal of R. Hence
rRris semiprime. Since rRr — rRrand rRr is semiprime, we have r € rRr. =3 X € R such
that r = rXr .Hence R is a regular partial semiring.
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4.12 Definition. A bi-ideal | of a so-ring R is said to be irreducible if and only if for any bi-
ideals H and K of R, | =H K implies | =H or | =K.

4.13 Definition. A bi-ideal | of aso-ring R is said to be strongly irreducible if and only if for
any bi-ideals H and K of R, HNK < | implies Hcl or K.
In the so-ring R =[0,1] as in the example 3.3, every bi-ideal [0,X] is strongly irreducible.

Clearly every strongly irreducible bi-ideal is irreducible. The following is an example of a so-ring
R in which an irreducible bi-ideal is not a strongly irreducible bi-ideal.

4.14 Example. Let (R,Z,)) be the so-ring as in the example 2.9. For the bi-ideals {0, a},{0, b}
and {0,c} of R, {0,0}N{0,c}={0}={0,a} and {0,b} z{0,a}.{0,c} z{0,a}. Hence
{0,a} is not strongly irreducible. However the bi-ideal {0, a}is irreducible.

4.15 Definition. A non empty subset A of so-ring R is said to be an i-system if and only if for
any a,be A<a>N<b>NA%g.

4.16 Example. Let (R,X,) be the so-ring as in the example 2.8. Then the subset {O,u} of R
is an i-system where as the subset {x, y} is not an i-system. Since < x >={0,x},<y >={0, y}
and <x>N<y>MNA=4¢.

4.17 Theorem. If | is a bi-ideal of a complete so-ring R then the following are equivalent :

(1) I isstrongly irreducible,

(ii)if a,beRsatisfy <a>[(1<b>cl thenaelorbel g
(iii) R\ isani-system.

Proof: (i )=>( ii ): Suppose | is strongly irreducible. Then for any a,b e R such that
<a>[1<b>cl then <a>clor<b>cl.Hence aelorbel.

(ii )=( iii ): Suppose a,beR such that <a>[(I<b>cl imply aclor bel. Let
a,beR\Il.Then <a>N<b>zl. =<a>N<b>MN(R\I)#¢. Hence R\I is an i-
system.

(iii )=(i): Suppose R\ is an i-system. Let H,K be bi-ideals of R>HK < | and
suppose Hzl and Kzl .= 3x,yeR\laxeH and yeK. =>3ze<x><y>
and z¢l. =>zeHNK and z¢1, and hence H(K & |, a contradiction. Hence | is
strongly irreducible.

4.18 Theorem. Let a be a non zero element of a so-ring Rand let | be a bi-ideal of R not
containing a . Then there exists an irreducible bi-ideal H of R containing | and not containing a.
Proof: Let C ={J e Bi—ideal(R)/1 < J &a ¢ J}. Clearly | € C. Then by Zorn’s lemma , C
has a maximal element. Let it be H . Now we prove that H is irreducible: Let A, B be the bi-

ideals of H such thatH = A( B and suppose that Hc A and HcB. =>3JacA&aeB,
and hence a € A(1B = H, a contradiction. Hence H is irreducible and hence theorem.

4.19 Theorem. Any proper bi-ideal of a so-ring R is the intersection of all irreducible bi-ideals
containing it.

Proof: Let | be a proper bi-ideal of a so-ring R. =1¢ |. Then by the theorem 4.18, 3 an
irreducible bi-ideal J of R containing | and not containing 1. Take

I’:ﬂ{J € Bi—ideal(R)/J is irreducible and 1 < J}. Then 1 < 1’. Suppose | < 1’.
=3Ixel’'>x¢|. Again by the theorem 4.18, 3 an irreducible bi-ideal H containing | and
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XgH. Then " < H .Since xel' xeH, a contradiction. Hence
I=1"= ﬂ{J € Bi—deal(R)/ J isirreducible and | < J }.

5. CONCLUSION

In this paper, we introduced the notions of prime bi-ideal, m-system, semiprime bi-ideal,
p-system, irreducible and strongly irreducible bi-ideals for a so-ring R . We characterized the
prime radical of R, intersection of all prime ideals of R interms of prime bi-ideals and semiprime
bi-ideals of R. Also we obtained the equivalent conditions to prime, semiprime and strongly
irreducible bi-ideals of R.
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