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Abstract: The major rise in data collection and storage has raised the necessity for much more powerful data
analysis tools. The data collected in huge databases needs to be handled effectively and efficiently. The
important and highly critical decisions are made not on the basis of information rich data stored in databases
but instead on a decision maker’s instinct merely because of the absence of the tools capable of extracting the
valuable knowledge from vast amount of the data. Currently expert systems depends on users to manually
input knowledge into knowledge bases. This process is often time consuming, expensive, and bias. The
problem with data mining algorithms are their non-capability of dealing with non-static, and unbalanced
data. There is a need for constantly updating the models to handle data velocity or new incoming data.

The objectives of the research paper is to implement the three popular data mining algorithms (Apriori
algorithm, FP — Growth algorithm, and Map Reduce algorithm) using appropriate programming tool
(preferably Java). The paper also perform comparative analysis of the three algorithms under study via
measuring efficiency in terms of time. The paper also elaborates on analysis of all three algorithms on the
basis of performance evaluation using accuracy metric.

Keywords: Apriori algorithm, data minng, FP — Growth algorithm, Map Reduce algorithm.

1. INTRODUCTION

Data mining deals with the kind of patterns that can be mined. On the basis of the kind of data to be
mined, there are two categories of functions involved in data mining mentioned as under.

e Descriptive
e Classification and Prediction
1.1. Descriptive Function

The descriptive function deals with the general properties of data in the database and are
mentioned as under [1].

11.1. Class/Concept Description

Class/Concept refers to the data to be associated with the classes or concepts. For example, in a
company, the classes of items for sales include computer and printers, and concepts of customers
include big spenders and budget spenders. Such descriptions of a class or a concept are called
class/concept descriptions. These descriptions can be derived by the following two ways.

e Data Characterization — Data characterization refers to summarizing data of class under study.
This class under study is called as Target Class.

o Data Discrimination — It refers to the mapping or classification of a class with some predefined
group or class.
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112. Mining of Frequent Patterns

Frequent patterns are those patterns that occur frequently in transactional data (FP - Growth). Here is
the list of kind of frequent patterns.

e Frequent Item Set — Tt refers to a set of items that frequently appear together, for example, milk
and bread.

e Frequent Subsequence — A sequence of patterns that occur frequently such as purchasing a
camera is followed by memory card.

e Frequent Sub Structure — Substructure refers to different structural forms, such as graphs, trees, or
lattices, which may be combined with item—sets or subsequences.

1.1.3. Mining of Association

Associations are used in retail sales to identify patterns that are frequently purchased together. This
process refers to the process of uncovering the relationship among data and determining association
rules.

For example, a retailer generates an association rule that shows that 70% of time milk is sold with
bread and only 30% of times biscuits are sold with bread.

1.14. Mining of Correlations

It is a kind of additional analysis performed to uncover interesting statistical correlations between
associated-attribute—value pairs or between two item sets to analyze that if they have positive,
negative or no effect on each other.

115. Mining of Clusters

Cluster refers to a group of similar kind of objects. Cluster analysis refers to forming group of objects
that are very similar to each other but are highly different from the objects in other clusters.

1.2. Classification and Prediction

Classification is the process of finding a model that describes the data classes or concepts [2]. The
purpose is to be able to use this model to predict the class of objects whose class label is unknown.
This derived model is based on the analysis of sets of training data. The derived model can be
presented as classification (if-then) rules, decision trees, mathematical formulae, and neural networks

[3].
The list of functions involved in these processes are mentioned as under.
121. Classification

It predicts the class of objects whose class label is unknown. Its objective is to find a derived model
that describes and distinguishes data classes or concepts. The Derived Model is based on the analysis
set of training data i.e. the data object whose class label is well known.

1.2.2. Prediction

It is used to predict missing or unavailable numerical data values rather than class labels. Regression
Analysis is generally used for prediction. Prediction can also be used for identification of distribution
trends based on available data [3].

12.3. OQutlier Analysis
Outliers may be defined as the data objects that do not comply with the general behavior or model of
the data available.

124. Evolution Analysis

Evolution analysis refers to the description and model regularities or trends for objects whose
behavior changes over time.
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2. DATA MINING ALGORITHMS

The research work covers the detailed study and implementation of three data mining algorithms:
Apriori algorithm, FP-Growth algorithm, and MapReduce algorithm.

2.1. Apriori Algorithm

In data mining, Apriori algorithm [2, 3] is a traditional algorithm used for learning association rules.
Association rules are referred to those statements which are used to find the relation between the data
items of the database. Apriori algorithm is used to mine the frequent data items and corresponding
association rule in the database of the transactions. Apriori algorithm is based upon the bottom up
strategy in which the common subset of data items is expanded to add one more item at a time and
then it is checked against the minimum support. Minimum support is the minimum value used to
search frequent patterns that satisfy this restriction [4, 5]. The mining of association rule from huge
amount of data assist the companies in taking important decisions regarding their business. This rule
is used in many fields such as storage planning, analysis of customer shopping, good shelves design
etc [4, 12].

Flowchart for Apriori algorithm

The working of Apriori algorithm is shown in the flowchart below depicted in Fig.1.
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Figl. The flowchart depicts the working of Apriori algorithm
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Example of Apriori Algorithm

The data in the Table 1 is taken as input where “T.Id” refers to Transaction_Id, “Items bought” shows
the items bought together. The minimum support for example under study is set to 3.

Tablel. Table shows the Input data

T.1d Items bought

1 Cookies, tea, cake

2 Bread, tea, butter

3 Cookies, Bread, tea, butter
4 Bread, butter

5 pan cakes

Calculate the number of times each item appears in the table.

Table2. Table displays the items against frequency of its occurrence

Items bought Support
Cookies
Bread
Tea
Butter
Pan cakes
Cake

Rl R W wwN

Only items having occurrence equal to or greater than 3 are moved to next stage

Table3. Table shows the qualified items

Items bought Support
Bread 3
Tea 3
Butter 3

Reassemble the three items with possible combinations.

Table4. Table shows the possible combinations of shortlisted items

Items bought

Bread, tea

Bread, butter

Tea, butter

Calculate the occurrences of combinations in Table 4

Tableb. Table shows the occurrences of combinations

Items bought Support
Bread, tea 2
Bread, butter 3
Tea, butter 2

Discard the products having minimum support less than 3.

Table6. Final output

Items bought

Support

Bread, butter

3

Only one item set with frequent item set is left with support 3.
2.2. FP-Growth Algorithm

Frequent patterns are item sets, subsequences, or substructures that appear in a data set
with frequency no less than a user-specified threshold. For example, a set of items, such as
milk and bread that appear frequently together in a transaction data set is a frequent item
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set. Pattern miningcan be applied on various types of data such as transaction databases, sequence
databases, streams, strings, spatial data, graphs, etc. Frequent patterns are those patterns that occur
frequently in transactional data [4, 5].

The most popular algorithm for pattern mining is the FP-Growth algorithm.The main idea of the
algorithm is to use a divide and conquer strategy. Compress the database which provides the frequent
sets; then divide this compressed database into a set of conditional databases, each associated with a
frequent set and apply data mining on each database. It is designed to be applied on a transaction
database to discover patterns in transactions made by customers in stores. But it can also be applied in
several other applications [6, 11, 13].

Flowchart for FP-Growth algorithm
The flowchart for FP-Growth algorithm is shown below in Fig. 2.

-
e
e

Fig2. The flowchart depicts the working of FP-Growth algorithm
Pros and cons of FP-Growth
The pros and cons related to FP-Growth algorithm are mentioned as under [10].
Pros
e The major advantage of the FP-Growth algorithm is that it takes only two passes over the data set.
e The FP-Growth algorithm compresses the data set because of overlapping of paths.

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 53


http://data-mining.philippe-fournier-viger.com/classic-data-mining-algorithm-1-apriori/

Relative Competence Centered Scrutiny and Implementation of Apriori, FP — Growth and Mapreduce
Algorithms

e The candidate generation is not required.

e The working of the FP-Growth algorithm is much faster as compared to the Apriori algorithm.
Cons

e The FP-Growth algorithm may not fit into the memory.

e The FP-Growth algorithm is expensive to construct. It consumes time to build. But once it is done
with construction, itemsets can be read off easily.

o Enormous time is wasted when support threshold is high as pruning can be practiced only on
single items.

e The process of calculating the support can be carried out only after the entire data set is added to
the FP-Tree.

2.3. Mapreduce Algorithm

MapReduce is parallel programming paradigm that enables the distributed processing of massive data
sets across the large cluster of commodity servers. The concept of MapReduce is easily
understandable. The data which is given as input is usually very large in size and to complete it in
specific time, it has to be distributed over the thousands of servers [6, 7, 9].

The Processing of MapReduce algorithm divides into six steps:
2.3.1. Job Submission

When the user writes a basic program for the creation of new JobClient, the JobClient send the
request to JobTracker to get a new JobID. Then the JobClient will check whether the input and output
directories are correct. After this, the JobClient will store the resources like the number of input data
fragmentations, the configuration files and mapper/reducer JAR files to HDFS. Basically, JAR files
will be keep as several backups. After all of this, the JobClient will submit a job request to JobTracker

[8].
2.3.2. Job Initialization

JobTracker is the master of the system so it will take many JobClient requests. All the requests are
placed in a queue which is managed by the job scheduler. Once the JobTracker starts to initialize, its
job is to make a JoblInProgress case to signify a job. The JobTracker must retrieve the input data from
HDFS and to decide on the number of the map tasks. The reduce tasks and TaskInProgress are
determined by the parameters in the configuration files.

2.3.3. Task Allocation

Firstly, the TaskTracker has to be launched which is responsible for the map and reduce tasks. The
TaskTracker will send the message to the JobTracker for the completion of the task. When the job
queue of the JobTracker is not empty, the TaskTracker will receive the tasks to do. Because of the
shortage of TaskTracker computing capability, it can handle limited tasks. The TaskTracker basically
have two task slots i.e. map task and reduce task. During task allocation, the JobTracker initially use
the map task. Once the map task slot is empty it will receive another job task. When it is full, then the
reduce task will receive the tasks to do.

2.34. Map Tasks Execution

In the map TaskTracker, there is a series of operations for the completion of the tasks. Initially, the
map TaskTracker will make a TaskInProgress object to schedule and monitor the tasks. Secondly, the
map TaskTracker will copy the JAR files and linked configuration files from HDFS to the local
working directory. When all these things are completed, the TaskTracker will create a new
TaskRunner to run the map task. The TaskRunner can launch a distinct JVM and will begin the map
task within to execute map() function. During the execution, the map task can communicate with
TaskTracker to report task progress until all the tasks are completed. At that point, all the computing
results are stored within the local disk.
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2.35. Reduce Tasks Execution

when the task execution of map tasks is completed, the JobTracker will follow the same procedure
with reduce TaskTracker to allocate the tasks. The reduce TaskTracker also execute the reduce()
function in separate JVM. At that point, the reduce task will download the results from map
TaskTracker. When all the map tasks completed their execution, the JobTracker notify the reduce
TaskTracker to start the execution. The same way, reduce task will communicate about the progress
with TaskTracker until all the tasks are finished.

2.36. Job Completion

At each stage of reduce execution, all the results of reduce task will stored in the temporary file in
HDFS. When the execution of all reducetasks is completed, all these temporary files are combined
together into the final output file. The JobTracker received the message of completion and the
JobClient notify the user and display the required information.

24. Algorithm For Mapreduce Algorithm
The step wise working of MapReduce algorithm in mentioned below [14].

e The incoming data can be alienated into n number of modules which depends upon the amount of
input data and processing power of the individual unit.

e All these fragmented modules are then passed over to mapper function where these modules
undergo simultaneous parallel processing.

e Thereafter, shuffling is conducted in order to gather similar looking patterns.

o Finally, reducer function is called which is responsible for getting the ultimate output in a reduced
form.

e Moreover, this technique is scalable and depending upon increase in the data to be processed, the
processing units can be further extended.

The working of MapReduce algorithm is shown in the flowchart depicted in Fig. 3 below.

Paralizl Process

Splitting

I“
|

Mapaing

Shusffling T

Aggregating

Reducing

ii
g

Final Crutput

Fig3. The flowchart depicts the detailed working of MapReduce algorithm
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3. CONTRIBUTION AND IMPLEMENTATION

A database titled “commondatabase.data” shown in Fig. 4 and Fig. 5 has been constructed which
consists of 3196 rows and 37 columns i.e. each entry consists of 37 numbers.

Al e ¢ 0 B F 6 W L ) kK| L M N O P Q@ R S T um

1 ! 1 B8 5 7 B A B 708 %N % % 0B

305 1 9 5 )
2 1 3 5 7 9 n B B ¥y B W B B W B A ¥ B M
30 1 3§ 1 9 v ¥ W ©w ¥ A B ¥ uw ¥ M W W ¥ W
41 3 5 71 9 m B K5 ¥ ®» A B B N B A H ¥ B A
s) 01 3 s 7 9 nm B B ¥ ¥ A B B N B A * ¥ B A
60 1 3 s 71 9 o ¥ B ¥ ¥ A B B ¥ ¥ A K ¥ B W
1Y 3§ 1 9 u @ 5 uw o » A B B ¥y ¥ M W ¥ B W
8 1 3 s 71 9 n B B U W A A B ¥ ¥ A K B B W
90 1 3 s 1 9 B B W W W A B T ¥ A K B B W
10 1 3 5 7 9 n B ¥ ¥y B n oW B W OB N WK B A
1l 1 3 5 71 3 n B ¥ w OB u W B W OB A U ¥ B A
Rt 3 s 71 % uoB B oy o A A B ¥ ¥ N U K B M
B3 s 1 % uoB 5w o A A B N ¥ N U K B M
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databasecorrect! | (§) { )
Fig4. The figure displays the snapshot of constructed database
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Fig5. The figure displays the second snapshot of constructed database
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Evaluating working of Apriori algorithm and FP — Growth algorithm at minimum support of
80% (minsup>=0.8)

The constructed database is given as input to the Apriori algorithm program developed in Java to find
out the frequent itemsets of sizes ranging from 1 to 14 with minimum support value of 80%
(minsup=0.8%). As the total number of entries in the database is 3196, the 80% of this value is 2556.8
(3196 * .80). So the extracted answer will contain only those itemsets whose support value occurrence
is above 2556.8.

Fig. 6 shows the result obtained in accordance with itemsets of size 1. The first row extracted is as
follows.

[3]<0.88829787234042562839>
Here [3] refers to the item been scanned.

0.8882978723404256 shows the support value of item [3] which is 88.82978% and is clearly above
the minimum support value of 80% or is above minsup value of .80.

| :\ﬁf&gféﬁ Fiiéé\d&ué\jdk\bin ac Apri

PC:\Program Files\Java\jdk\hin>java Aprioril
fInput configuration: 76 items, 3196 transactions,
fminsup = B.8%
[Passing through the data to compute the frequency of 76 itemsets of size 1
1[31 (0.8882978723404256 2839)
N51 (0.9295994993742178 2971)
| (B.9624530663329162 3076)
(0.8992490613266583 2874)
(A.8948685857321652 2868)
.9953066332916145 3181)
.951188986232791 3648)
.9696495619524466 36099)
.9918648310387985 3178
.8491864831038799 2714)
.8172715894868585 2612)
.9427409261576971 3613)
.996558197747184 3185)

.945244055068836 3021)
.9996871088861077 3195)
.9852941176470589 3149)
.9574468085106383 3068)
.8232165206508135 2631
.945244055068836 3621)
frequent itemsets of size 1 C(with support 86.8x)

Fig6. shows the result obtained in accordance with itemsets of size 1 having minsup value >=.80

Fig. 7 shows the result obtained in accordance with itemsets of size 2. The first row in the result
extracted is as follows.

[9, 66] <0.8494993742177722 2715>

Here [9, 66] refers to the itemset been scanned.
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0.8494993742177722 shows the support value of itemset [9, 66] which is 84.94993742% and is
clearly above the minimum support value of 80% or is above minsup value of .80.

[9. 661
[7, 581
[29, 641
(68, 621
[29, 44]
(72, 21

[48, 64]
[48, 621
[36, 60]
[48, 561
[5. 681
[5, 71

[25, 6081
[52, 6@]
[5, 621
[9, 521
[44. 60]
[56, 621
[7, 361
[52, 561
[3. 661
[3, 521
(68, 661

(0.8494993742177722 2715)
(0.9621401752190237 3875)
(0.818523153942428 2616
(0.94305381727158%4 3014)
(0.8125782227784731 2597

(B.8620150187734669 2755)

(B.8229036295369212 263@)
(B.9001877346683355 2877)
(@.9549436795994993 3852)
(0.8879849812265331 2838)
(0.9148936176212766 2924)

(B.8945556946182729 2859)

(@.886107634543179 2832)
(0.9818523153942428 3138)
(A.8945556946182729 2859)
(B.8967459324155194 2866)
(@.8025657071339174 2565)
(0.9145807259073843 2923)
(0.9321626282853567 2979
(0.9436795994993742 3016)
(0.8457446808510638 2703)
(B.8854818523153942 2838)
(B.945244655068836 3021)
(B.9662077596996246 3088)
(0.8494993742177722 2715)
(B.8169586983729662 2611)
(0.9483729662877597 3031)
(B.8870463078848561 2835)
(B.9499374217772215 3836)
(0.8041301627833792 257@)
(0.9039424280350438 2889)
(0.8216520650813517 2626)
(0.9133291614518148 2919)
(0.84386733416770%6 2697
(B.8360450563204005 2672)
(0.8128911138923655 2598)
(B.9114518147684606 2913)
(B.9527534418022529 30845)
(B.9377346683354193 2997
(B.9346057571964956 2987)
(B.8582603254067585 2743)
(B.898936170212766 2873)
(@.9485506883604505 3006)
(0.8419899874843555 2691)
(@.8454317897371715 2782)
(B.9342928660826032 2986)
(@.92708963704630788 2963)
(B.9449311639549437 3020)
(B.814142678347935 2682)
(B.8923654568210263 2852)
(B.9424280350438048 3012)
(8.9540050062578223 3049)

(B.8394868585732165 2683)
. (0.9823779724655819 2884)
;Found 141 frequent itemsets of size 2 (with support 80.06%)

Fig7. shows the result obtained in accordance with itemsets of size 2

Fig. 8 shows the result obtained in accordance with itemsets of size 3. The first row in the result
extracted is as follows.

[48, 52, 66] <0.895494367959952862>
Here [48, 52, 66] refers to the itemset been scanned.

0.89549436795995 shows the support value of itemset [48, 52, 66] which is 89.549436795995% and
is clearly above the minimum support value of 80% or is above minsup value of .80.
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[48, 52, 661
[7, 58, 661
[58, 68, 62]
[58, 66, 64]
[7, 25, 34]
[7, 48, 48]
[42, 52, 561
40, 48]
48, 601]
40, 661
56, 601
36, 621
29, 341
» 29, 581
29,521
40, 661
40, 561
34, 48]
7, 48]
» 58, 68]
Y
» 48, 661
» 92, 581
7, 48]
. 68, 661]
» 98, 621
9,.34]
48, 661]
34, 661
%2, 601]
34, 581
36, 48]
56, 661
[3, 2. 291
[25, 48, 621
[5, 36, 601]
[48, 52, 62]
[29, 34, 48]
[3, 7, 291
[25, 29, 48]
[34, 48, 561
[48, 56, 58]
[48, 58, 64]
7. 361
56, 581
40, 62]
29, 661
40, 621
48, 581
25, 58]

(0.89549436795995 2862)

(B.9089486858573217 29@5)
(8.9430538172715894 3014)
(0.80819774718398 2583)

(0.8144555694618273 2603)
(B.8970588235294118 2867)
(8.8025657871339174 2565)
(0.827909887359199 2646)

(0.8973717146433041 2868)
(0.8382352941176471 2679)
(8.8623279098873592 2756)
(0.889549436795995 2843)

(8.9026908635794744 2885)
(0.8908010012515645 2847)
(8.9568210262828536 3@58)
(0.9017521902377973 2882)
(8.8541927489261577 2738)
(8.859511889862328 2747)

(0.8128911138923655 2598)

(B.9771589486858573 3123)
(B.9308510638297872 2975)
(0.8908010012515645 2847)
(0.8469962453066333 2787)

(9.8879849812265331 2838)

(8.9449311639549437 3028)
(0.9527534418022529 3645)

(9.8272841051314143 2644)

(0.8629536921151439 2758)
(8.8688986232790988 2777)
(0.8748435544430538 2796)
(B.8466833541927409 2766)
(B.8926783479349186 2853)
(0.8335419274092616 2664)

(9.8044430538172715 2571)

(8.8520025031289111 2723)
(8.8845431789737171 2827)
(0.8967459324155194 2866)
(0.8926783479349186 2853)

(9.8651439299123985 2765)

(0.8563829787234043 2737)
(B.845118898623279 2701)
(0.88767209091126408 2837)
(8.8225907384230288 2629)

(8.8316645807259074 2658)

(B.8687634543178974 2751)
(8.9152065081351689 2925)
(0.84824780976220827 2711)
(0.8476220275344181 2709)
(8.8416770963704631 2698)
(8.8579474342928661 2742)

d 566 frequent itemsets of size 3 (with support 80.62)

Fig8. shows the result obtained in accordance with itemsets of size 3

Fig. 9 shows the result obtained in accordance with itemsets of size 4. The first row in the result
extracted is as follows.

[29, 48, 56, 66] <0.8416770963704631 2690>

Here [29, 48, 56, 66] refers to the itemset been scanned. 0.8416770963704631 shows the support
value of itemset [29, 48, 56, 66] which is 84.16770963704631% and is clearly above the minimum
support value of 80% or is above minsup value of .80.
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[29, 48, 56, 661 <(0.8416770963704631 2690)
[7, 9. 52, 681 (0B.8479349186483184 2718)
56, 621 <(B.8782853566958698 2807)
60, 661 (0.8601376720901126 2749)
62, 661 (0B.8078848560708876 2582)
52, 561 <(@.845118898623279 2761)
48, 601 <(0.889549436795995 2843)
29, 561 (0.811613767208%98113 2592)
8, 681 (0.8269712140175219 2643)
[29,. 34, 40, 581 <(0.9424280350438048 3012)
7. 34, 521 (0.82133917396745%94 2625)
» 34, 36, 601 (0.90855068836045056 2894)
36, 52, 681 (0.9145807259073843 2923)
., 40, 58, 661 (0.8416770963704631 2698)
5, 52, 681 (0.8122653316645807 2596)
29, 34, 661 (0.8085106382978723 2584)
40, 62, 661 <(0.8M88235294117647 2585)
9, 52, 661 (0.8113266583229836 2593)
» 29, 52, 561 (B.8388610763454318 2681)
» 34, 52, 561 (0.8022528160200251 2564)
36, 62, 661 (0B.8385481852315394 2680)
29, 48, 621 (0.8006883604505632 2559)
29, 36, 681 <(PB.8548185231539425 2732)
., 52, 58, 661 (0.93397997496871089 2985)
408, 56, 681 <(0.8917396745932415 2850)
, 42, 52, 581 (0.8194618272841851 2619)
58, 62, 661 (B.8526282853566959 2725)
40, 60, 621 (0.8768951188986232 2806)
9, 29, 521 (0.8025657071339174 2565)
. 58, 62, 661 (0@.8585732165206508 2744)
29, 48, 521 <(0.89956195244055087 2875)
[5, 34, 56, 621 (0.8310387984981227 2656)
[29, 34, 48, 661 <(0@.8554443053817271 2734)
[40, 48, 52, 561 <(0.8785982478@97623 2808)
7. 52, 621 (0.8263454317897372 2641)
48, 62, 661 (0.8063204005006258 2577)
» 29, 48, 661 (0.817584480600751 2613)
40, 42, 581 <(0.8088235294117647 2585)
52, 56, 681 (0.8976846857571964 2869)
. 34, 36, 621 (0.8798498122653317 2812)
» 34, 52, 581 (0.8457446808510638 2763)
29, 36, 561 (0A.8169586983729662 2611)
» 40, 56, 581 (0.932415519399249 2986
29, 36, 621 (0B.8275969962453066 2645)
» 52, 58, 641 (0.8222778473091364 2628)
. 34, 40, 561 (0.8939299123904881 2857
29, 48, 681 <(0.8341677096378463 2666)
» 29, 62, 661 (0.8167008768951189 2591)
[25, 48, 56, 681 <(@.80350438A4755945 2568)
1[29, 36, 62, 661 (0.8720275344186225 2787)
fFound 1383 frequent itemsets of size 4 (with support 80.02)

Fig9. Shows the result obtained in accordance with itemsets of size 4

Similarly, the frequent itemsets of size 5 to 10 can be obtained.

Fig. 10 shows the result obtained in accordance with itemsets of size 10. The first row in the result
extracted is as follows.

[7, 29, 36, 40, 48, 52, 58, 60, 62, 66] <0.8050688360450563 2573>
Here [7, 29, 36, 40, 48, 52, 58, 60, 62, 66] refers to the itemset been scanned.

0.8050688360450563 shows the support value of itemset [7, 29, 36, 40, 48, 52, 58, 60, 62, 66] which
is 80.50688360450563 % and is clearly above the minimum support value of 80% or is above minsup
value of .80. Fig. 10 also indicates that there are 2 unique itemsets of size 11 created from itemsets of
size 10
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The total time taken in the entire process is recorded as 103.432 seconds (103432 milliseconds) at

minsup = .80.

(7, 29. 36, 40,
(7. 2%9. 36, 48,
i[5, 29, 36, 48,
(7. 29. 36, 48, 52, 58, 68, 62, 66]
(7, 29, 36, 48, 48, 52, 58, 62, 661
(29, 48, 48, 52, 56, 58, 68. 62, 661
b5, 29. 34, 48, 52, 56, 58, 608, 661
p[5. 7. 29, 36, 48, 48, 52, 58, 601
(7, 29. 34, 36, 48, 48, 58, 608, 661
(29, 34, 36, 48, 52, 58, 68, 62, 661
b7, 29, 36, 48, 52, 56, 58, 68, 621
(7. 29, 36, 48, 48, 52, 68, 62, 66]
(29, 36, 48, 48, 52, 56, 58, 68, 62]
p[5. 7. 29, 34, 48, 52, 58, 68, 66]
(7, 29, 36, 48, 48, 58, 608, 62, 661
(29, 36, 48, 52, 56, 58, 68. 62, 661
(7, 29. 36, 48, 52, 56, 58, 68, 621
(29, 34, 48, 52, 56, 58, 68, 62, 661
(7, 29, 36, 48, 48, 56, 58, 60, 621
(5. 29. 36, 48, 48, 52, 58, 6@, 62]
I[29, 34, 36, 48, 52, 56, 58, 68, 661
(7. 29. 36, 48, 48, 52, 58, 6@, 62]
(7, 34, 36, 48, 48, 52, 58, 608, 661
b5, 29. 34, 48, 52, 56, 58, 6@, 62]
(29, 34, 36, 48, 48, 52, 58, 608, 66]
(7. 29. 36, 48, 48, 52, 56, 58, 6@1]
(7, 29, 48, 48, 52, 58, 608, 62, 661
(29, 34, 36, 48, 48, 52, 56, 58, 681
b7, 29, 36, 48, 52, 56, 58, 60, 661
(7. 36, 48, 48, 52, 56, 58, 6@, 62]
[34, 36, 40, 48, 52, 58, 60, 62, 661
(29, 34, 36, 48, 52, 56, 58, 68, 621
(29, 34, 36, 48, 48, 52, 56, 58, 62]
(25, 29, 36, 48, 48, 52, 58, 68. 661
b5, 29, 48, 52, 56, 58, 668, 62, 661
b5, 29, 36, 48, 48, 52, 58, 68, 661
fFound 85 frequent itemsets of size 9
ICreating itemsets of size 18 based o

56, 58,
58, 60,
58, 60,

621
661
621

48,
52,
52,

52,
56.
56.

(B.809136420525657 2586)
(B.8025657871339174 2565)
(B.8000625782227785 2557
(B.8291614518147684 2658>
(B.8050688360450563 2573)
(B.80872590738423029 2588
(B.804755944931164 2572
(B.8103879849812266 2598)
(B.8869461827284186 2579)
(B.8069461827284186 2579
(B.8860075093867334 2576)
(B.8050688360450563 2573)
(B.8310387984981227 2656
(B0.8191489361762128 2618>
(B.8085106382978723 2584)
(B.8035043804755945 2568)
(B.8304136162703379 2654
(B.8207133917396746 2623)
(B.8031914893617821 2567
(B.811952440955606884 2595)
(B.814142678347935 26082)
(B.8366708385481852 2674
(B.804755944931164 2572
(B.8110137672098113 2592
(B.8376095118898623 2677
(B.8285356695869838 2648)
(B.8132040050062578 2599
(B.8191489361702128 2618
(B.8194618272841851 2619
(B.8038172715894869 2569
(B.8844430538172715 2571)
(B.8225907384230288 2629
(B.8013141426783479 2561)
(B.80086883604505632 2559
(B.8031914893617821 2567
(B.8204005006257822 2622)>
(with support 86.0%>
n 85 itemsets of size 9

iCreated 78 unique itemsets of size 10

lPassing through the data to compute the frequency of 78 itemsets of size 18
b[7,. 29, 36, 48, 48, 52, 58, 608, 62, 661 <(B.8650688368450563 2573)

(7. 29. 36, 48, 48, 52, 56, 58, 60, 621 <(B.8016270337922403 2562)

I[7. 29, 34, 36, 48, 48, 52, 58, 608, 661 (0.8841361627033792 2578)

[29,. 34, 36, 48, 48, 52, 58, 60, 62, 661 (B.8831914893617821 2567

[Found 4 frequent itemsets of size 10 (with support 86.0%)

ICreating itemsets of size 11 hased on 4 itemsets of size 18

ICreated 2 unique itemsets of size 11

[Passing through the data to compute the frequency of 2 itemsets of size 11
lExecution time is: 103.432 seconds.

lFound 8227 frequents sets for support 88.8x (absolute 2557

[Done

Fig10. Shows the result obtained in accordance with itemsets of size 10

The minsup value can be dynamically altered as desired and the operation can be conducted
accordingly.

The same database shown in Fig. 4 and Fig. 5 is given as input to the source code of FP — Growth
algorithm designed in Java platform. The minsup value has been set to .80%.

Fig. 11 shows the result obtained in accordance with itemsets of size 1. The first row in the result
extracted is as follows.

[3]<0.88829787234042562839>

Here [3] refers to the itemset been scanned. 0.8882978723404256 shows the support value of itemset
[3] which is 88.82978723404256 % and is clearly above the minimum support value of 80% or is
above minsup value of .80. Fig. 5.13 also indicates that there are 76 itemsets of size 1 out of which 19
itemsets of size 1 qualified the set condition of minimum support.
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[C:\Progran Files\Java\jdk\bin>java FPGrouth2
[Input configuration: 76 items, 3196 transactions,
Ininsup = @0.8%

[Passing through the data to compute the frequency of 76 itemsets of size 1
(0.8882978723404256 2839)
(0.9295994993742178 2971)
(0.9624530663329162 3076)
(0.8992490613266583 2874)

.8948685857321652 2868)
.9953066332916145 3181)
.951188986232791 3648)
.9696495619524406 3099)
.9918648310387985 3178)
.8491864831038799 2714)
.8172715894868585 2612)
.94274089261576971 3013)
.996558197747184 3185)
.945244055068836 30821)
.9996871088861077 3195)
.9852941176470589 3149)
.9574468085106383 3068)
.8232165206508135 2631)
.9452440855068836 3621)
frequent itemsets of size 1 (with support 88.6%)

Figll. Shows the result obtained in accordance with itemsets of size 1

Fig. 12 shows the result obtained in accordance with itemsets of size 2. The first row in the result
extracted is as follows.

[29, 44]<0.812578222777847312597>
Here [29, 44] refers to the itemset been scanned.

0.81257822277784731 shows the support value of itemset [29, 44] which is 81.257822277784731 %
and is clearly above the minimum support value of 80% or is above minsup value of .80. Fig. 12 also
indicates 141 itemsets of size 2 qualified the set condition of minimum support i.e. equal to or greater
than minsup. The itemset [29, 44] appeared frequently 2597 times in the database under study.

[29,. 441 <(B.8125782227784731 2597>
I[7. 91 <B.8628150187734669 2755)
[48, 641 <(B.8229036295369212 2638>
[48,. 621 <(B.9001877346683355 2877>
| . 681 <B.9549436795994993 3852>
| - 561 <0.8879849812265331 2838>
(5. 681 <(@.91489361708212766 2924
J[5. 71 <(B.8945556946182729 2859)
(B0.886187634543179 2832>
(A.9818523153942428 3138>
(B.8945556946182729 2859)>
(B8.8967459324155194 2866>
(0.8025657071339174 2565)>
(0.9145807259873843 2923>
(B8.93210826282853567 2979>
(B.9436795994993742 3016>
(B.8457446808510638 2703>
(B.8854818523153942 2838>
(0.94524409558068836 3021>
.9662077596996246 3088)>
(@.8494993742177722 2715>
<(B.8169586983729662 2611>
(B.9483729662877597 3831)>
(B.88704630A78848561 2835)
<0.9499374217772215 3036>
(0.8041301627833792 2570
(B8.9039424280350438 2889>
{B8.8216520658813517 2626>
(B8.9133291614518148 2919>
(B.84386733416770%6 2697>
(A.8368450563204005 2672>
(0.8128911138923655 2598>
(B.91145181476846086 2913>
(B8.9527534418022529 3045)
<B8.9377346683354193 2997>
(B.9346057571964956 2987>
(B.8582603254867585 2743>
(B8.898936170212766 2873>
(B.9405506883604505 3006>
(B.8419899874843555 2691>
(0.8454317897371715 2702>
(B.9342928668826032 2986>
(B.9270963704630788 2963>
(A.9449311639549437 3028>
(B8.814142678347935 2602>
(B.8923654568210263 2852)>
(0.9424280A3560438048 3012)
<B.9540050062578223 3049>
(B.8394868585732165 2683>
| - 561 <(8.90923779724655819 2884
Found 141 frequent itemsets of size 2 (with support 88.8x>

Fig12. Shows the result obtained in accordance with itemsets of size 2
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Fig. 13 shows the result obtained in accordance with itemsets of size 3. The first row in the result
extracted is as follows.

[48, 52, 66] <0.84599436795995  2862>
Here [48, 52, 66] refers to the itemset been scanned.

0.84599436795995 shows the support value of itemset [48, 52, 66] which is 84.599436795995 % and
is clearly above the minimum support value of 80% or is above minsup value of .80. Fig. 5.15 also
indicates 566 itemsets of size 3 qualified the set condition of minimum support i.e. equal to or greater
than minsup. The itemset [48, 52, 66] appeared frequently 2862 times in the database under study.

[48, 52, 661 (B.89549436795995 2862)
| (B8.9089486858573217 29@85)
(B.94305381727158%94 36814)
(B.80819774718398 2583)
(B.8144555694618273 26083)
(B.8970588235294118 2867)
(B.8025657071339174 2565
(B.827909887359199 2646)
(B.89737171464330841 2868)
(0.8382352941176471 2679)
(B.8623279098873592 2756)
(B.889549436795995 2843)
(8.90926908635794744 2885)
(0.8908010012515645 2847)
(B.9568210262828536 3058)
(B.9017521902377973 2882)
(B.8541927409261577 2730)
481 (B.859511889862328 2747
7. 481 (B.8128911138923655 2598)
., 681 (B.9771589486858573 3123)
601 (B.930851P638297872 2975
661 (B.8908010A12515645 2847)
» 52, 581 (B.8469962453066333 2787)
7. 481 (B.8879849812265331 2838)
» 68, 661 (0.9449311639549437 3626)
» 58, 621 (B8.9527534418022529 3045)
9. 341 (08.8272841051314143 2644)
48, 661 (B.8629536921151439 2758)
661 (B.8688986232790988 2777)
601 (B.8748435544430538 2796)
581 (B.8466833541927409 2786)
401 (0.8926783479349186 2853)
56, 661 <(@.8335419274892616 2664)
9. 291 (B.8844430538172715 2571)
» 48, 621 (8.8520025031289111 2723)
36, 681 (B.8845431789737171 2827)
» 52, 621 (B.8967459324155194 2866)
j[29. 34, 481 <(@.8926783479349186 2853)
| 7. 291 (B.8651439299123985 2765
J[25, 29, 481 <(0.8563829787234843 2737
f[34, 48, 561 (B.845118898623279 2781)
j[48, 56, 581 <(@.8876720901126488 2837)
(40, 58, 641 (0.8225907384230288 2629)
| 9. 361 (B.8316645807259874 2658)
56, 581 (@.8687634543178974 2751)
48, 621 <(@.9152065081351689 2925)
29, 661 <(0.8482478097622827 2711)
48, 621 <(0B.8476220275344181 2709)
48, 581 (0.8416770963704631 2698)
| 25, 581 <(@.8579474342928661 2742)
IFound 566 frequent itemsets of size 3 (with support 80.8x)

Fig13. Shows the result obtained in accordance with itemsets of size 3
Similarly frequent itemsets can be obtained for size 4 to size 11.

Fig. 14 shows the result obtained in accordance with itemsets of size 10. The first row in the result
extracted is as follows.

[7, 29, 36, 48, 52, 56, 58, 60, 66] <0.8025657071339174 2565>
Here [7, 29, 36, 48, 52, 56, 58, 60, 66] refers to the itemset been scanned.

0.8025657071339174 shows the support value of itemset [7, 29, 36, 48, 52, 56, 58, 60, 66] which is
80.25657071339174 % and is clearly above the minimum support value of 80% or is above minsup
value of .80. Fig. 14 also indicates 78 itemsets of size 10 qualified the set condition of minimum
support i.e. equal to or greater than minsup. The itemset [7, 29, 36, 48, 52, 56, 58, 60, 66] appeared
frequently 2565 times in the database under study.

Fig. 14 also shows that 2 itemsets of size 11 also qualify the set condition of minimum support.
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(7. 29. 36, 48, 52. (B.8025657071339174 2565)
| 29, 36, 48, 52, (B.800B625782227785 2557>
| 29, 36, 48, 52, (B.8291614518147684 2658>
j[7. 29, 36. 48, 48. » 58, » 661 <(B.8050688360458563 2573)
| » 48, 48, 52, 56, 58, 68, 62, 661 <(B.86872590738423029 2588)>
29, 34, 48, 52, 56, 58, 68, 661 <(0A.884755944931164 2572)>
7. 29, 36, 48, 48, 52, 58, 681 <(B.81093879849812266 2598>
34, 36, 48, 48, 58, 60, 661 <(B.80694618272841086 2579>
34, 36, 48, 52, 58, 68, 62, 661 <(A.88694618272841086 2579)
36, 48, 52, 56, 58, 60, 621 <(0A.8060075093867334 2576>
- 36, 48, 48, 52, 608, 62, 661 <(B.80506883608450563 2573
» 48, 48, 52, 56, 58, 68, 621 <(B.8318387984981227 2656>
- 34, 48, 52, 58, 68, 661 <(B.8191489361782128 2618)>
36, 408, 48, 58, 608, 62, 661 <(B.80851086382978723 2584)
48, 52, 56, 58, 68, 62, 661 (B.8035843804755945 2568>
36, 40, 52, 56, 58, 60, 621 <(0.8304130162703379 2654>
34, 48, 52, 56, 58, 68, 62, 661 <A.82087133917396746 2623)
36, 40, 48, 56, 58, 60, 62]1 <(0.8031914893617821 2567>
» » 36, 48, 48, 52, 58, 68, 621 <(BA.8119524485506884 2595)
» 34, 36, 48, 52, 56, 58, 68, 661 <(B.814142678347935 2602)>
36, 40, 48, 52, 58, 608, 621 <(B.8366708385481852 2674
48, 48, 52, 58. 60. (B.8084755944931164 2572)>
29. 34, 48, 52, 56. 58, 68, (B.811081376726890113 2592)>
34, 36, 48, 48, 52, 58, 64, (B.8376095118898623 2677
44, 48, 52, 56. 58. (B.8285356695869838 2648>
68, 62, (8.8132848050062578 2599>
~ 56, 58, (A.8191489361702128 2618)>
» 58, 60. (B.81946182728410851 2619>
- 58, 60. (B8.8038172715894869 2569>
48, 48, » 58, 68, 62, 661 <(B.8844430538172715 2571
34, 36, 48, 52, 56, 58, 608, 621 <(B.8225987384230288 2629
34, 36, 48, 48, 52, 56, 58, 621 <(0A.8013141426783479 2561)
| 29, 36, 448, 48, 52, 58, 68, 661 <(A.80068836084505632 2559)
J[5,. 29, 48, 52, 56, 58, 60, 62, 661 <(0.8031914893617821 2567>
I[5. 29, 36, 48, 48, 52, 58, 68, 661 <(0.8204805006257822 2622)
[Found 85 frequent itemsets of size 9 C(with support 88.8x)
ICreating itemsets of size 10 based on 85 itemsets of size 9
[Created 78 unique itemsets of size 10
[Passing through the data to compute the frequency of 78 itemsets of size 10
36, 408, 48, 52, 58, 608, 62, 661 <(A.88506883608450563 2573)>
36, 408, 48, 52, 56, 58, 60, 621 <(A.80816270337922403 2562)
34, 36, 48, 48, 52, 58, 68, 661 <0.8841301627033792 2578)
| » 34, 36, 48, 48, 52, 58, 68. 62, 661 <(B.86031914893617821 2567
[JFound 4 frequent itemsets of size 18 <(with support 80.8x)

éPassing through the data to compute the frequency of 2 itemsets of size 11
[Execution time is: 183.107 seconds.

Done

IC:\Progran Files\Java\jdk\hin>_
Figl14. Shows the result obtained in accordance with itemsets of size 10

The total time taken to conduct frequent mining using FP — Growth algorithm is 103.107 seconds
(103107milliseconds).

Table 7 below show the figures obtained at minimum support of 80% (minsup=0.8) via running
Apriori algorithm on database under study “commondatabase.dat”.

Table7. Displays the figures obtained on running Apriori algorithm at minsup= 0.8

Apriori algorithm at minsup=0.8
Size Created Itemsets Frequent Itemsets
1 76 19
2 171 141
3 821 566
4 2360 1383
5 4478 2130
6 5583 2104
7 4445 1314
8 2189 481
9 617 85
10 78 4
11 4 2
12 0 0
13 0 0
14 0 0
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Apriori Algorithm implementation at
minsup = .8

6000

4000
2000 l 1
g = = B I
1 2 3 4 5 6 7 8 9 10 11 12 13 14

mSize M Created Itemsets M Frequent ltemsets

Fig15. Figure displays the figures obtained on running Apriori algorithm at minsup= 0.8

Table 8 below show the figures obtained at minimum support of 80% (minsup=0.8) via running FP -
Growth algorithm on database under study “commondatabase.dat”.

Table8. Displays the figures obtained on running Apriori algorithm at minsup= 0.8

FP-Growth algorithm at minsup=0.8
Size Created Itemsets Frequent Itemsets
1 76 19
2 171 141
3 821 566
4 2360 1383
5 4478 2130
6 5583 2104
7 4445 1314
8 2189 481
9 617 85
10 78 4
11 4 2
12 0 0
13 0 0
14 0 0

FP - Growth algorithm at minsup = 0.8
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

B FP — Growth algorithm at minsup = 0.8 B FP — Growth algorithm at minsup = 0.8

M FP — Growth algorithm at minsup = 0.8

Figl16. Figure displays the figures obtained on running Apriori algorithm at minsup= 0.8
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Table 9 shows the created itemsets and frequent itemsets values obtained at different sizes by both the

algorithms.
Table9. Comparative table at minsup>= 0.8
Comparative table at minsup>=0.8
(Apriori algorithm Vs. FP-Growth algorithm)
Apriori Apriori FP-Growth Fp-Growth
Size Created itemsets Frequent Itemsets Created itemsets | Frequent Itemsets

1 76 19 76 19

2 171 141 171 141

3 821 566 821 566

4 2360 1383 2360 1383

5 4478 2130 4478 2130

6 5583 2104 5583 2104

7 4445 1314 4445 1314

8 2189 481 2189 481

9 617 85 617 85

10 78 4 78 4

11 4 2 4 2

12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

Figure 17 shows the graphical representation of created itemsets and frequent itemsets values obtained
at different sizes by both the algorithms.

Comparative representation at minsup >= 0.8
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Figl7. Shows the graphical representation of created itemsets and frequent itemsets values at different sizes of
both the algorithms

4. PERFORMANCE EVALUATION OF APRIORI ALGORITHM AND HADOOP BASED MAPREDUCE
ALGORITHM

Among the two data mining algorithms, Apriori algorithm and FP — Growth algorithm, the Apriori
algorithm dominates in performance when evaluated in terms of time taken. This section of the
research paper compares the efficiency of Apriori algorithm with the MapReduce algorithm in terms
of time consumed. The source code for Apriori algorithm has been constructed using C language. A
small excel file titled “numbers.csv” shown in Fig. 18 is provided as input to both the algorithms.
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Figl8. Input data file “numbers.csv”’

The comparative graph of Apriori and Hadoop is shown below in Fig. 19. The result shows that
MapReduce algorithm is much more speedy and efficient in mining as compared to Apriori algorithm.

A B C D E F G H J
Algorithm Name Time in Seconds
Apriori 13.516711
MapReduce 0.86

Time in Seconds

Apriori MapReduce

Fig19. Comparison of Apriori and MapReduce algorithm in terms of time in seconds

So, it can be concluded that the working of MapReduce algorithm is much better than Apriori
algorithm.

5. CONCLUSION

The research work conducted has proved that among the two conventional data mining algorithms,
Apriori algorithm and FP — Growth algorithm, the performance of Apriori algorithm is much better
than FP — Growth algorithm when we talk about efficiency in terms of time taken. The test has been
conducted on three minimum support values of 80%. The Apriori algorithm has proved its worth upon
FP — Growth algorithm as evaluated and proved in section 3.

Thereafter, the comparison of Apriori algorithm is done with MapReduce algorithm to conduct the
performance evaluation of both the algorithms. It is proved in the evaluation that MapReduce
algorithm takes much less time in completing the operation as compared to Apriori algorithm.

Therefore, it can be concluded that out of three algorithms under study in this research paper, the
MapReduce turns out to be the best in efficiency in terms to completing any particular operation
relevant to mining.
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