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Abstract: In this paper, an SLBS computer virus propagation model with cure and vertical transmission 

rate is proposed and analyzed.  The basic reproduction number are obtained which guarantee computer virus 

eradication.  Moreover we demonstrate that the viral equilibrium is globally asymptotically stable if the basic 

reproduction number is more than unity. Some numerical simulations illustrate our main results. According to 

theory and simulation, a set of policies is proposed for dropping or eradicating computer virus propagation 

across the Internet effective. 
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1. INTRODUCTION 

With the development of technology and society, people are increasingly inseparable from the Internet 
and computer. Simultaneously accompanied by computer viruses problem has become more 

prominent, and caused serious damages for computer users information security. Consequently, it is 

urgent us to better understand how computer viruses spread over the Internet and to get effective e 

measures to cope with this issue. 

As the names imply, a computer virus are quite similar with a biological virus in the infectiousness. 

So a serial of classic epidemicals such as the SIR model [1, 2], SEIR model [3,4], the SEIQV 

model[5], are proposed. But above all of these more or less neglect the intrinsic difference between 
the computer virus and biological virus. Consider the fact that the E compartment (latent computers) 

can infect the other computers, L.X. Yang, X. Yang et al. suggest a series of novel epidemic models, 

known as the SLBS models and reveal their dynamical behaviors[6–8]. In real computer network, 

vertical transmission plays an important role in the spread of computer virus [3]. As a result of a new 
computer on its software installation process may introduces the virus, infectious in nature transmit 

through both horizontal and vertical modes. 

Motivated by the above comment, the present paper addresses a SLBS model with cure and vertical 
transmission , where some degree of a cure against a computer virus is considered, and it moves into 

the susceptible class from latent computers or infected computers. 

Our paper is organized as follows.  In section 2 we formulate the complete mathematical model. 
Section 3 we define the basic reproductive number and give its biological interpretation. 

Moreover, the existence of equilibria is given. The stabilities of the disease free and endemic 

equilibria of the model are obtained in section 4-5. Section 6 discuss the results and perform some 

numerical simulations to support these results. 

2. THE MODEL 

Let S (t), L(t) and B(t) denote the number of computers that it stays in uninfected, latent and 
breaking-out. For convenient, it denotes with S, L, B, respectively. we consider the following model 

based on [7]. 

Ṡ = Λ − p1 L − p2 B − β1 S L − β2 S B + γ1 L + γ2 B − µS 

L̇ = β1S L + β2S B + p1 L − (γ1 + α + µ)L  
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Ḃ = αL + p2 B − (γ2 + µ)B                                                                                                           (1) 

where 

Λ, the computer number is increased via recruiting at a constant rate. 

pi  (i = 1, 2), the vertical transmission rate that the recruited computers who are infected by 

latent computers ( p1 ) or breaking-out computers ( p2 ). 

µ, the remove rate of computers from network; 

βi (i = 1, 2), transmission coefficient of L, B; 

γi  (i = 1, 2), cure rate of latent computers and breaking-out computers; 

α, the rate that transfer latent computer to breaking-out computers. 

It is obvious that the region {(S , L, B)|S  ≥ 0, L ≥ 0, B ≥ 0} positively invariant for the model 

(1). Summing up the three equations in model (1), we have 

(S + L + B)
′ 

= Λ − µ(S + L + B) 

then lim supt→∞(S + L + B) ≤=∆ N Let max{ p1, p2} < µ, then we obtain the region
 

Ω = {(S, L, B)|S  ≥ 0, L ≥ 0, B ≥ 0, S + L + R ≤ N} 

is a positive invariant set of system (1). We will consider the dynamic behavior of system (1) 

on Ω. 

Substitute S = N − L − B into the second equation of system (1), we can consider the following two-

dimensional limiting system: 

L̇ = (β1 L + β2 B)(N − L − B) − (γ1 + α + µ − p1)L 

Ḃ = αL + p2 B − (γ2 + µ)B                                                                                                                       (2) 

within a positive invariant set Ω2 = {(L, B)|L ≥ 0, B ≥ 0, L + B ≤ N}. 

3. THE BASIC REPRODUCTION NUMBER AND EQUILIBRIA 

The basic reproductive number has played a central role in epidemiological theory for infectious 

diseases because it it provides an index of transmission intensity and establishes threshold criteria. In 

this section, we will calculate the basic reproduction number of system (1). 

It is easy to see that system (1) always has a virus-free equilibrium (the absence of infectious node, 

that is, L = 0, B = 0), E0 (N, 0, 0). 

                                                                                 (3) 

Let 
1

1
1

1

N

µ p
R



   
  and 

 

R1 represents the average number of secondary infections generated by an infectious individual 

through computer nodes who are contaminated by infection during his mean time staying in the latent 

period, Similarly, R2 represents the average number of secondary infections by an infection who 

survived undergo latent during his mean time on breaking. The viral equilibrium of system (1),E*(S *, 

L*, B*) , is determined by equations 

Λ − p1 L − p2 B − β1S L − β2S B + γ1 L + γ2 B − µS = 0 
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β1 S L + β2S B + p1 L − (γ1 + α + µ)L = 0 

αL + p2 B − (γ2 + µ)B = 0                                                                                                                   (4) 

Using the third equation of (4), we have 

 

For, L ≠ 0 substituting it into the second equation of (4), we can obtain 

0

*
N

S
R



                                                                                                                                                (5)

 

Substituting (5) into the first equation of (4) yields 

                                                                                                             (6) 

Furthermore 

                                                                                                             (7) 

Theorem 1 System (2.1) has the only infection free equilibrium ( ,0,0)E N and also has a unique 

infection equilibrium E*(S*, L*, B*) besides E0 for R0 > 1. 

4. THE VIRUS-FREE EQUILIBRIUM AND ITS STABILITY 

A global stability result for the virus-free equilibrium E0 of system (1) is given below. 

Theorem1. The virus-free equilibrium E0 of system (1) is locally asymptotically stable for R0 ≤ 1 

and unstable for R0 > 1. 

Proof. Let us calculate the Jacobian matrix at E0 

 

The corresponding characteristic equation of J0 is 

λ
2 

− T r(J0)λ + Det(J0) = 0, 

Where 

T r(J0) =   β1n − (γ1 + α + µ − p1) − (γ2 + µ − p2) 

1
2

0
2

2 
( )(1 )1 R

N
µ p

µ p


 


  


 


   

2  ( )2µ p    

( ) ( ( ))( )0   1 1 1 2 2

2 

Det J n µ p µ p

N

   



      


 

( )(   1 1 2 2)( )1 0µ p µ p R          

If R0 < 1, we have T r(J0 ) < 0, Det(J0) > 0 It follows that the two roots of the equation (8) have 

negative real parts. By the Hurwitz criterion, E0 is locally asymptotically stable. 

If R0  > 1, we have Det(J0 ) < 0. It mean that the equation (8) have two roots λ1  > 0, λ2  < 0, 

E0 is unstable. The proof is complete.                                                                                          
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Theorem2. The virus-free equilibrium E0 of system (1) is globally asymptotically stable for 

R0 ≤ 1. 

Proof. Define a Lyapunov function 

2 2( ,
2

)
L aB

V L B



                                                                                                                                  

(9) 

Then derivative of the function V (L, B) with respected to t along an orbit of system (2) is given by 

(2)

dV

dt
=   β1 S L2  + β2S BL − (γ1 + α + µ − p1)L2+ aαLB 

                    −a(γ2 + µ − p2 )B
2

 

                ≤   β1 N L2 + β2 N BL − (γ1 + α + µ − p1)L2 + aαLB 

                  −(γ2 + µ − p2)B2
 

             =   (β1 N − R0(γ1 + α + µ − p1 )) L
2 + (β2 N + aα)LB 

                 −a(γ2 + µ − p2 )B
2 − (1 − R0)(γ1 + α + µ − p1)L2 

         2

22
2

2
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N

N LB
µ p
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Let 2 Na



 , then 

 

Because R0   ≤ 1, It can be seen that
(2)

0
dV

dt
  holds for all (L, B) ∈  Ω2.   Furthermore, the 

maximum invariant set in {(L, B) ∈  Ω2,
(2)

dV

dt
  0} is the singleton {E0},  therefore, by Lasalle-

Lyapunov  theorem, every solution that starts in Ω2 approaches E0 as t → ∞. The proof is complete.                                                                                                                          

5. THE VIRAL EQUILIBRIUM AND ITS STABILITY 

In this section, we study the stability of the viral equilibrium. First we have 

Theorem 3. If R0 > 1, the virus-free equilibrium E0 of system (1) is locally asymptotically stable. 

Proof. the Jacobian matrix at E* 

                                                                            (10) 
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2 

We have 

                                                                        (11) 

                                                                      (12) 

From the second and the third equation of system (1). we have 

                                                                                                      (13) 

Substituting (13) into (12), we have 

                                                                                                  (14) 

Based on Routh-Hurwitz Theorem, E*is locally asymptotically stable.  

Now, we study the global stability of the viral steady state E*.  First of all, we consider the 

following two lemmas, which are useful in the follows. Let Ω′= Ω2 − E0, Ω0  = {(L, B)|L  > 

0, B > 0, (L, B) ∈ Ω′ }, ∂Ω0 = Ω′ \Ω0 .
 

Lemma1. System (2) has no periodic obit on Ω0 . 

Proof. Note that 

, 1  2  1 1( ) ( )( ) ( ) P L B L B N L B µ p L                                                                                     (15) 

, 2 ( ) )2(Q L B L p B µ B      

Let us consider the following Dulac function 

                                                                                                                              (16) 

Then 

                                                                                        (17) 

Thus, from Bendixson-Dulac criterion that system (1) has no periodic orbit in Ω0.                    
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2 

Lemma2. System (2) has no periodic obit that goes across a point on ∂Ω0. 

Proof. Suppose that (L̃ , B̃ ) is an arbitrary point on ∂Ω0. Following we will consider three possible 

cases in term of ∂Ω0. 

Case I. 0 < L̃ ≤ N, B̃ = 0. Then Ḃ |(L̃ ,B̃ ) = αL̃ > 0. 

Case II. 0 < B̃ ≤ N, L̃ = 0. Then L̇ |(L̃ ,B̃ ) = β2 B(N − B) > 0. 

Case III. L̃ + B̃ = N, B̃ = 0. Then (L̇ + Ḃ )|(L̃ ,B̃ ) = −(γ1  + µ − p1 )L − (γ2 + µ − p2)B < 0. 

Hence, the claimed result from the above discussion.                                                               

Theorem4. The viral equilibrium E* of system (1) is globally asymptotically stable on Ω′ if 

R0 > 1. 

Proof. The claimed result follows by combining Lemma (1), (2) and the Poincare-Bendixson 

theorem.                                                                                                                                         

6. NUMERICAL RESULTS 

We shall verify the validity of the proposed model through numerical simulations.  We set 

N = 500, p1 = 0.15, p2 = 0.23, β1  = 0.002,  β2  = 0.005,  γ1  = 0.2, γ2  = 0.4, µ = 1.2, α = 0.8, 

then system (1) becomes: 

Ṡ =   416.667 − 0.15L − 0.23B − 0.002S L − 0.005S B 

+0.2L + 0.4B − 1.2S 

L̇ =   0.002S L + 0.005S B + 0.15L − (0.2 + 0.8 + 1.2)L 

LḂ =   0.8L + 0.23B − (0.4 + 1.2)B  (18) 

 

Figure1. Time series of system (18), R0 = 0.8333. The computer virus dies out. 

 

Figure2. Time series of system (1), p1 = p2  = 0.1, µ = 1, the other parameters are same as in model (18) R0 = 

1.3360. The computer virus permanent.  
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From (3), R0 = 0.8333 <  1. According to Theorem 2, E0 is globally asymptotically stable. We 

know that the computer virus will die out (see Fig.1).  Let p1   =  p2   = 0.1, µ = 1, then R0  = 

1.3360 > 1. According to Theorem 4, E∗ is globally asymptotically stable and that the computer 

virus permanent. 

Fig.3 and Fig.4 show that the tendency of the infected nodes(S + B) with β1, β2 .  It shows that L + 

B goes to zero as β1   = 0.001(Fig.3), β2   = 0.001, 0.003(Fig.4) for which R0   <  1. Furthermore, 

we can observe that the value of L + B increases with β1, β2. 

The contour plots of Fig.5 shows the dependence of R0 on p1 and p2, and it shows that R0 

increases more quickly with p1  and p2.  It suggest us that we should pay more attention to software 

system’s installation of introducing virus. Fig.6 shows the dependence of R0 on γ1 and γ2. We can 

observe that it gains a good effective to increase the recovery rate γ1, γ2  when γ1  or γ2 is very small. 

The plotyy of Fig.7 shows that the R0 , B and L + B increase as α increases, Fig.8 shows that 

the R0, B and L + B decrease rapidly as µ increases, and when µ = µ*  = 1.4132, R0(µ*) = 1. If µ < µ*, 

R0(µ) < 1 and B∞ = 0 and L∞ + B∞ = 0. It prompt that 

7. CONCLUSION 

In this paper, we have analyzed an SLBS model with vertical transmission and we consider the L 

compartment and B compartment infective rate are distinct. We have studied the stability of virus-free 

equilibrium.  We find that the virus-free equilibrium is globally asymptotically stable under the 
basic reproduction number and viral equilibrium is globally asymptotically 

 

Figure3. The tendency of the infected nodes (L(t) + B(t)) with different value of β1( all other parameters are 

same as in model (18) except for p1 = p2 = 0.1, µ = 1). 

 

Figure4. The tendency of the infected nodes (L(t) + B(t)) with different value of β2( all other parameters are 

same as in model (18) except for p1 = p2 = 0.1, µ = 1). 
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Figure5. Contour plots of R0 versus the vertical transmission rate p1, p2( all other parameters are same as in 

model (18) except for p1 = p2 = 0.1, µ = 1). 

 
Figure6. Plot contours of R0 versus recover rate γ1 , γ2( all other parameters are same as in model (18) 

except for p1 = p2 = 0.1, µ = 1). 

 
Figure7. Plots of R0 and L∞ + B∞ with α( all other parameters are same as in model (18) except for p1 = p2 = 

0.1, µ = 1). 

 
Figure8. Plots of R0 and L∞ + B∞ with µ ( all other parameters are same as in model (18) except for p1 = p2 = 

0.1, µ = 1), µ* = 1.4132 . 
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stable otherwise. The analysis and numerical simulation of the SLBS model shows that the 

introduction of vertical transmission modifies the threshold of system for an epidemic to occur. It is 
important to emphasize that the factors of computer virus propagation always changes over time. we 

leave this topic for future work. 
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