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Abstract: Software testing has faced many intractable problems: for real world programs, the number of 

possible input combinations can exceed the number of atoms in the ocean, so as a practical matter it is 

impossible to show through that the program works correctly for all inputs. Combinatorial testing offers a 

solution. Combinatorial testing of software analyzes interactions among variables using a very small number of 

tests. It can help to detect the problem early in the testing life cycle. Artificial Life techniques can dramatically 

change our ability to solve a host of problems in applied science and engineering; many search techniques have 

been developed and applied successfully in many fields. In this paper we had shown different variants from 

existing search algorithms: Genetic Algorithm, Particle Swarm Optimization and Ant Colony Algorithm, Bee 

colony Optimization, Simulate Annealing. Combinatorial testing can use a small number of test cases to test 

systems while preserving fault detection ability. However, the complexity of test case generation problem for 

combinatorial testing is NP-complete. The efficiency and complexity of this testing method have attracted many 

researchers from the area of combinatorics and software engineering. We believe that these search techniques 

can be further improved by fine-tuning their configuration and used in broad ranges of area. 

Keywords: Genetic Algorithm; Ant Colony Algorithm; Particle Swarm Optimization; Covering Array; 

Combinatorial Testing; 

1. INTRODUCTION 

Combinatorial testing is a black-box technique that could dramatically reduce the number of tests as it 

is a highly efficient technique to detect software faults. The method generally followed in 

combinatorial testing is to derive test cases from input domain of the system under test. But, when the 

input domain is larger and the output domain is much smaller, it is preferable to go for testing the 

output domain either exhaustively or as much as possible. 

Combinatorial testing is a specification based sampling technique that provides a systematic way to 

select combinations of program inputs or features for testing. It is an effective testing technique to test 

hardware/software that reveals failures in a given system based on input or output combinations. It 

has been applied over the years to test input data, configurations, web forms, protocols, graphical user 

interfaces, software product lines etc. The pair wise testing can detect possible t-way combinatorial 

interactions for t=2, 3, 4, 5, 6 or more. Classification of combinatorial techniques is shown in figure 1. 

 

Fig.1. Classification of combinatorial testing. 
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Combinatorial testing is used to detect problems early in the testing life cycle. The test requirements 

for this testing are either configurations or input parameters. Test planning and design is also needed 

for implementing this testing. Combinatorial testing plays an important role in generating the test 

cases for different applications. This type of testing plays a vital in role in test case prioritization also. 

Audit trail and certification is also important one. The classification of combinatorial testing is as 

shown above. 

2. SURVEY OF LITERATURE 

Pair wise testing is a wildly popular approach to combinatorial testing problems. The number of 

articles and textbooks covering the topic continues to grow, as do the number of  commercial and 

academic courses that teach the technique. Despite the technique's popularity and its reputation as 

a best practice, old techniques to be over promoted and poorly understood. Knowledge of the 

weaknesses of the pairwise testing technique, or of any testing technique, is essential to apply the 

technique wisely. A wide variety of different strategies and implementations for generating pair wise 

test sets have been published.  

According to Yu Lei and K.C. Tai [1] propose a test generation strategy, called in-parameter-order (or 

IPO), for pairwise testing. The IPO strategy allows the use of local optimization techniques for test 

generation and the reuse of existing tests when a system is extended with new parameters or new 

values of existing parameters. They present practical, IPO-based test generation algorithms. They 

describe the implementation of an IPO-based test generation tool and show some empirical results.  

Xiang Chen, Qing Gu, Xin Zhang and Daoxu Chen [2] adopt ant colony optimization (ACO) to build 

this prioritized pairwise interaction test suite (PITS). The biased covering array is proposed and the 

Weighted Density Algorithm (WDA) is developed. In their research, they propose four concrete test 

generation algorithms based on Ant System, Ant System with Elitist, Ant Colony System and Max-

Min Ant System respectively. They also implement these algorithms and apply them to two typical 

inputs and report experimental results. The results show the effectiveness of these algorithms. 

Kewen Li and Zhixia Yang [3] propose ant colony arithmetic, which is a new way to solve the pair-

wise test data generating question. It can generate fewer test cases which can cover more pair 

combinations, and can solve questions with fast calculate speed. The method can get the goal of 

optimizing in the process of regression test. The result shows that the method is feasible. 

 J.D. McCaffrey [4] presents the results of generating pairwise test sets using a simulated bee colony 

algorithm. Compared to published results for seven benchmark problems, the simulated bee colony 

approach produced test sets which were comparable or better in terms of size for all seven problems. 

However, the simulated bee colony approach required significantly longer generation time than 

deterministic approaches in all cases. The results demonstrate that the generation of pairwise test sets 

using a simulated bee colony algorithm is possible, and suggest that the approach may be useful in 

testing scenarios where pairwise test set data will be reused. 

Xiang Chen, Qing Gu, Jingxian Qi and Daoxu Chen [5] apply particle swarm optimization (PSO), a 

kind of meta-heuristic search technique, to pairwise testing (i.e. a special case of combinatorial testing 

aiming to cover all the pairwise combinations). To systematically build pairwise test suites, two 

different PSO based algorithms is proposed. To successfully apply PSO to cover more uncovered 

pairwise combinations in this construction process, a detailed description is provided on how to 

formulate the search space, define the fitness function and set some heuristic settings. Final empirical 

results show the effectiveness and efficiency of their approach. 

 Mohammed I. Younis, Kamal Z. Zamli and Nor Ashidi Mat Isa [6] propose an efficient pairwise 

strategy for generating pairwise combinatorial test set using artificial parameters and values, termed 

RA and ORA, that can systematically minimize the pairwise test set generated from higher order test 

parameters to lower order ones. Their paper demonstrates and compares the results against existing 

strategies including IRPS, IPO, GA, ACA, Jenny and All Pairs. The Results show that ORA and RA 

are performs well, and gives a minimal number of the test set than other published result and available 

tools. 

S.A. Ghazi and M.A. Ahmed [7] propose a GA-based technique that identifies a set of test 

configurations that are expected to maximize pair-wise coverage, with the constraint that the number 

of test configurations is predefined. Although the paper primarily focuses on the interaction between 
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software components, the idea can be applied to single code component testing. Some experiments are 

also performed using their proposed approach. The results were promising. 

S. Khatun, K.F. Rabbi, C.Y. Yaakub and M.F.J. Klaib [8] propose an effective random search based 

pairwise test data generation algorithm named R2Way to optimize the number of test cases. The 

algorithm is able to support both uniform and non-uniform values effectively with performance better 

than the existing algorithms/tools in terms of number of generated test cases and time consumption. 

James D. McCaffrey [9] presented the results of an investigated the generated pairwise test sets using 

a genetic algorithm. Compared with published results for deterministic pairwise test set generation 

algorithms, the genetic algorithm approach produced test sets which were comparable or better in 

terms of test set size in 39 out of 40 cases. However, the genetic algorithm approach required longer 

processing time than deterministic approaches in all cases.  

J.D. McCaffrey [10] describes the results of an investigation of pairwise test set generation using a 

genetic algorithm. The results illustrate that generation of pairwise test sets using a genetic algorithm 

is possible, and suggest that the technique may be both practical and useful in certain software testing 

situations. 

Pedro Flores, Yoonsik Cheon [11] formulated the problem of finding a pairwise test set as a search 

problem and applies a genetic algorithm to solve it. They also describe an open source tool called 

PWiseGen for generating pairwise test sets. PWiseGen produces competitive results compared with 

existing pairwise testing tools. Besides, it provides a framework and a research platform for 

generating pairwise test sets using genetic algorithms.  

Priti Bansal, Sangeeta Sabharwal, Shreya Malik, Vikhyat Arora, and Vineet Kumar [12] present a 

method to generate initial population using hamming distance and an algorithm to find crossover 

points for combining individuals selected for reproduction. They apply genetic algorithm, a meta-

heuristic search algorithm, to find an optimal solution to the pair-wise test set generation problem. 

They describe the implementation of the proposed approach by extending an open source tool 

PWiseGen and evaluate the effectiveness of the proposed approach. Empirical results indicate that 

their approach can generate test sets with higher fitness level by covering more pairs of input 

parameter values 

Manisha Patil, P.J. Nikumbh [13] formulate the problem of finding a pair-wise test set as a search 

problem and apply a search technique “simulated annealing” to solve it. Their empirical results 

concluded that the optimal solution for their problem statement is to find the maximum number of 

different pairs which are the best test set which we capture. The key contribution of their work 

includes simulating annealing algorithm approach for generating the best test case set. A software for 

web based and semantic based application is developed in software engineering for determining 

minimized test cases.  

3. PICTURE OF DIFFERENT ARTIFICIAL LIFE TECHNIQUES 

A. Partical Swarm Optimization 

Particle swarm optimization (PSO) is a population-based stochastic approach for solving continuous 

and discrete optimization problems. In particle swarm optimization, simple software agents, 

called particles, move in the search space of an optimization problem. The position of a particle 

represents a candidate solution to the optimization problem at hand. Each particle searches for better 

positions in the search space by changing its velocity according to rules originally inspired by 

behavioral models of bird flocking. 

Particle swarm optimization belongs to the class of swarm intelligence techniques that are used to 

solve optimization problems. Particle swarm optimization (PSO) is a computational method 

that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. PSO optimizes a problem by having a population of candidate solutions, here 

dubbed particles, and moving these particles around in the search-space according to 

simple mathematical formulae over the particle's position and velocity. Each particle's movement is 

influenced by its local best known position but, is also guided toward the best known positions in the 

search-space, which are updated as better positions are found by other particles. This is expected to 

move the swarm toward the best solutions.   

http://www.scholarpedia.org/article/Optimization
http://www.scholarpedia.org/article/Swarm_intelligence
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity
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PSO is a meta-heuristic as it makes few or no assumptions about the problem being optimized and can 

search very large spaces of candidate solutions. However, meta-heuristics such as PSO do not 

guarantee an optimal solution is ever found. More specifically, PSO does not use the gradient of the 

problem being optimized, which means PSO does not require that the optimization problem 

be differentiable as is required by classic optimization methods such as gradient descent and quasi-

newton methods. PSO can therefore also be used on optimization problems that are partially irregular, 

noisy, change over time, etc. Strategy for generating the combinatorial test cases Particle Swarm 

Optimization is as shown below. 

Particle Swarm Optimization Strategy 

  

B. Genetic Algorithms 

Genetic Algorithms (GAs) are a class of computational procedures inspired by biological evolution. 

GAs encode a potential solution to a specific problem using a simple chromosome-like data structure 

and then apply operators modeled after genetic recombination and mutation to these structures in a 

way that is designed to preserve essential information. GAs maintains a population of individuals each 

of which consists of a chromosome/solution and a fitness value which measures how well the 

individual's chromosome solves the problem. Individuals with high fitness values are selected to serve 

as the basis for producing offspring solutions. Individuals with low fitness values are removed from 

the population of solutions and replaced by offspring solutions. 

Genetic algorithms are typically used to solve maximization and minimization problems that are 

combinatorial complex and which do not lend themselves to standard algorithmic techniques. In 

pseudo code, one typical form of a GA is:  set generation := 0 initialize population while (generation < 

maxGenerations)   evaluate population fitness values sort population based on fitness if (optimal 

solution exists) break select high-fitness individuals produce offspring stochastically mutate offspring   

replace low-fitness individuals end while return best individual. There are many variations of the 

basic algorithm structure which are possible.  

Genetic algorithms merely provide a basic framework for solving a problem and the implementation 

of a specific genetic algorithm which solves a specific problem requires several design decisions. 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wikipedia.org/wiki/Quasi-newton_methods
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Some of the major design decisions include the following. First, a chromosome representation of a 

solution to the target problem must be designed. Second, a fitness function which measures how well 

a chromosome solves the target problem must be constructed. Third, stochastic algorithms to 

implement genetic crossover and mutation must be designed. Additional GA design parameters 

include selection of the population size, a method for determining which chromosome-solutions are 

selected for reproduction, and a method for determining which chromosome solutions are selected for 

removal from the population. The strategy for generating the combinatorial test cases is shown below. 

Genetic Algorithm 

Begin 

Step 1: P = initializePopulation() 

Step 2: i = 0 

Step 3: while (i < MAX_GEN && !has Solution(P))  

do 

       calculateFitness(P) 

Step 4: C = ∅ while (|C| < NUM_CROSSOVER)  

do 

   (p1….., pn) = selectParents(P) 

            (c1……. cn) = crossover (p1… pn); 

Step 5: if (mutate?) then 

c1 = mutate (c1); 

c2 = mutate (c2); 

end 

 

Step 6: C = C ∪ {c1; c2} 

           end 
Step 7: if (immigration?) then 

I = createImmigrants(); 

end 

Step 8: P = updatePopulation(P, C ∪ I) 

Step 9: i = i + 1end 

End 

C. Ant Colony Optimization 

The ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational 

problems which can be reduced to finding good paths through graphs. This algorithm is a member of 

the ant colony algorithms family, in swarm intelligence methods, and it constitutes some meta-

heuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis,
[1][2]

 the first 

algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a 

path between their colony and a source of food. The original idea has since diversified to solve a 

wider class of numerical problems, and as a result, several problems have emerged, drawing on 

various aspects of the behavior of ants. 

ACO is a new heuristic method to solve complex optimization questions, which based on simulation 

and evolution of populations. The ant colony arithmetic is a random search one, which gets optimal 

solution through evolving candidate ones that composes ant colony. The arithmetic is composed of 

many ants, which search solutions independency in the candidate solution space. Pheromone is left 

over by ants on the solutions and can be apperceived by other ants. Ants are adapted to choose the 

high-concentration path and the collectivity behavior reflects a phenomenon of information positive 

feedback: the more ants passed the path, the bigger probability the late comers choose. The ants, as 

the distributed intelligent body, can search optimal solutions according to the directions of artificial 

pheromone trail and can make use of the heuristic information based on the questions. Additional, 

there are two important mechanisms: pheromone volatilization and background behavior. Forgetting 

is an advanced intelligent behavior, as a kind of which, because the pheromone will volatilize along 

with the time, the pheromone will volatilize along with time to avoid the solving process running into 

local optimal solution. The background behavior includes neighbor search process and collection of 

local information of questions. ACO was formalized into a meta-heuristic search technique by M. 

Dorigo and his co-workers in 1992.  

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Graph_(mathematics)
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Marco_Dorigo
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ants
https://en.wikipedia.org/wiki/Ant_colony
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Now ACO was widely applied for solving many combinatorial optimization problems, such as 

traveling salesman problem, scheduling problems, and vehicle routing problems. The ACO can be 

summarized as follows. Ants start searching for a test by initially randomly choosing tests. For each 

test chosen by an ant, the quality of the test (i.e. the incremental benefit) is evaluated. Then the ant 

deposits pheromone trail, i.e., marks with pheromone the levels forming the test. The quantity of 

deposed pheromone is proportional to the test quality. As in nature, artificial ants tend to follow 

pheromone trail. This indirect communication between ants progressively promotes the test covering 

more incremental benefits. 

Ant Colony optimization Strategy 

.  

D. Bee Colony Optimization Strategy 

The Bees Algorithm is a population-based search algorithm which was developed in 2005.
[1]

 It mimics 

the food foraging behavior of honey bee colonies. In its basic version the algorithm performs a kind of 

neighborhood search combined with global search, and can be used for both combinatorial 

optimization and continuous optimization. The only condition for the application of the Bees 

Algorithm is that some measure of topological distance between the solutions is defined. The 

effectiveness and specific abilities of the Bees Algorithm have been proven in a number of studies. 

Common honey bees such as Apis mellifera take on different roles within their colony over time.  

Young bees nurse larvae, construct and repair the hive, guard the entrance to the hive, and so on. 

Mature bees typically become foragers. Foraging bees typically occupy one of three roles: active 

forgers, scout foragers, and inactive foragers. Active foraging bees travel to a food source, gather 

food, and return to the hive. Roughly 10% of foraging bees in a hive are employed as scouts. These 

scout bees investigate the area surrounding the hive, often a region of up to 50 square miles, looking 

for attractive new food sources. At any given time some foraging bees are inactive. These inactive 

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Bees_algorithm#cite_note-Pham_.26_al.2C_2005-1
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Continuous_optimization
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foraging bees wait near the hive entrance. When active foragers and scouts return to the hive, 

depending on the quality of the food source they are returning from, they may perform a waggle 

dance to an audience of inactive foraging bees. This waggle dance is believed to convey information 

to the inactive foragers about the location and quality of the associated food source. Inactive foragers 

receive this food source information from the waggle dance and may become active foragers. In 

general, an active foraging bee continues gathering food from a particular food source until that food 

source is exhausted, at which time the bee becomes an inactive forager. 

Algorithms inspired by the behavior of natural systems have been studied for decades. These 

algorithms are sometimes called meta-heuristic algorithms because they provide a high-level 

framework which can be adapted to solve optimization, search, and related problems, as opposed to 

providing a stringent set of guidelines for solving a particular problem. A review of the literature on 

algorithms inspired by bee behavior suggests that the topic is evolving and that there is no consensus 

on a single descriptive title for meta-heuristics based on bee behavior. Algorithm names in the 

literature include Bee System, BeeHive, Virtual Bee Algorithm, Bee Swarm Optimization, Bee 

Colony Optimization, Artificial Bee Colony, and Bees Algorithm 

There are many ways to map honey bee foraging behavior to an algorithm which solves a specific 

optimization problem. 

Each Bee object has an Act method which encapsulates the core SBC algorithm. In pseudo-code the 

logic for an active foraging bee is:  

if (role == Active)  

(leave hive, go to food source)  

examine a neighbor food source  

if (quality >= current quality)  

current memory := neighbor location  

numberVisits := 0  

else  

numberVisits := numberVisits + 1  

endif  

(return to hive)  

if (numberVisits == maxNumberVisits)  

role := Inactive  

numberVisits := 0  

else  

perform waggle dance to hive  

endif  

endif 

4. CONCLUSION 

Using combinatorial methods for either configuration or input parameter testing can help make testing 

more effective at an overall lower cost. We concluded that this survey paper highlights the generation 

of test cases for combinatorial testing using artificial techniques. Our survey will be useful for the 

researchers and industry persons can easily navigate through the research undertaken in chosen field 

of interest so that they pursue research further.  
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