
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 6, June 2015, PP 19-26

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page | 19

The Survey on Artificial Life Techniques for Generating the Test

Cases for Combinatorial Testing

Lakshmi Prasad Mudarakola
 [1]

Dept. of Computer Science & Engineering,

NBKRIST, Nellore, AP, India.

prasad.hinduniv@gmail.com

M.Padmaja
 [2]

Dept. of Computer Science and Engineering,

SKUniversity, Anathapur, AP, India.

padmaja.ruthwika@gmail.com

Abstract: Software testing has faced many intractable problems: for real world programs, the number of

possible input combinations can exceed the number of atoms in the ocean, so as a practical matter it is

impossible to show through that the program works correctly for all inputs. Combinatorial testing offers a

solution. Combinatorial testing of software analyzes interactions among variables using a very small number of

tests. It can help to detect the problem early in the testing life cycle. Artificial Life techniques can dramatically

change our ability to solve a host of problems in applied science and engineering; many search techniques have

been developed and applied successfully in many fields. In this paper we had shown different variants from

existing search algorithms: Genetic Algorithm, Particle Swarm Optimization and Ant Colony Algorithm, Bee

colony Optimization, Simulate Annealing. Combinatorial testing can use a small number of test cases to test

systems while preserving fault detection ability. However, the complexity of test case generation problem for

combinatorial testing is NP-complete. The efficiency and complexity of this testing method have attracted many

researchers from the area of combinatorics and software engineering. We believe that these search techniques

can be further improved by fine-tuning their configuration and used in broad ranges of area.

Keywords: Genetic Algorithm; Ant Colony Algorithm; Particle Swarm Optimization; Covering Array;

Combinatorial Testing;

1. INTRODUCTION

Combinatorial testing is a black-box technique that could dramatically reduce the number of tests as it

is a highly efficient technique to detect software faults. The method generally followed in

combinatorial testing is to derive test cases from input domain of the system under test. But, when the

input domain is larger and the output domain is much smaller, it is preferable to go for testing the

output domain either exhaustively or as much as possible.

Combinatorial testing is a specification based sampling technique that provides a systematic way to

select combinations of program inputs or features for testing. It is an effective testing technique to test

hardware/software that reveals failures in a given system based on input or output combinations. It

has been applied over the years to test input data, configurations, web forms, protocols, graphical user

interfaces, software product lines etc. The pair wise testing can detect possible t-way combinatorial

interactions for t=2, 3, 4, 5, 6 or more. Classification of combinatorial techniques is shown in figure 1.

Fig.1. Classification of combinatorial testing.

mailto:prasad.hinduniv@gmail.com

Lakshmi Prasad Mudarakola & M.Padmaja

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 20

Combinatorial testing is used to detect problems early in the testing life cycle. The test requirements

for this testing are either configurations or input parameters. Test planning and design is also needed

for implementing this testing. Combinatorial testing plays an important role in generating the test

cases for different applications. This type of testing plays a vital in role in test case prioritization also.

Audit trail and certification is also important one. The classification of combinatorial testing is as

shown above.

2. SURVEY OF LITERATURE

Pair wise testing is a wildly popular approach to combinatorial testing problems. The number of

articles and textbooks covering the topic continues to grow, as do the number of commercial and

academic courses that teach the technique. Despite the technique's popularity and its reputation as

a best practice, old techniques to be over promoted and poorly understood. Knowledge of the

weaknesses of the pairwise testing technique, or of any testing technique, is essential to apply the

technique wisely. A wide variety of different strategies and implementations for generating pair wise

test sets have been published.

According to Yu Lei and K.C. Tai [1] propose a test generation strategy, called in-parameter-order (or

IPO), for pairwise testing. The IPO strategy allows the use of local optimization techniques for test

generation and the reuse of existing tests when a system is extended with new parameters or new

values of existing parameters. They present practical, IPO-based test generation algorithms. They

describe the implementation of an IPO-based test generation tool and show some empirical results.

Xiang Chen, Qing Gu, Xin Zhang and Daoxu Chen [2] adopt ant colony optimization (ACO) to build

this prioritized pairwise interaction test suite (PITS). The biased covering array is proposed and the

Weighted Density Algorithm (WDA) is developed. In their research, they propose four concrete test

generation algorithms based on Ant System, Ant System with Elitist, Ant Colony System and Max-

Min Ant System respectively. They also implement these algorithms and apply them to two typical

inputs and report experimental results. The results show the effectiveness of these algorithms.

Kewen Li and Zhixia Yang [3] propose ant colony arithmetic, which is a new way to solve the pair-

wise test data generating question. It can generate fewer test cases which can cover more pair

combinations, and can solve questions with fast calculate speed. The method can get the goal of

optimizing in the process of regression test. The result shows that the method is feasible.

 J.D. McCaffrey [4] presents the results of generating pairwise test sets using a simulated bee colony

algorithm. Compared to published results for seven benchmark problems, the simulated bee colony

approach produced test sets which were comparable or better in terms of size for all seven problems.

However, the simulated bee colony approach required significantly longer generation time than

deterministic approaches in all cases. The results demonstrate that the generation of pairwise test sets

using a simulated bee colony algorithm is possible, and suggest that the approach may be useful in

testing scenarios where pairwise test set data will be reused.

Xiang Chen, Qing Gu, Jingxian Qi and Daoxu Chen [5] apply particle swarm optimization (PSO), a

kind of meta-heuristic search technique, to pairwise testing (i.e. a special case of combinatorial testing

aiming to cover all the pairwise combinations). To systematically build pairwise test suites, two

different PSO based algorithms is proposed. To successfully apply PSO to cover more uncovered

pairwise combinations in this construction process, a detailed description is provided on how to

formulate the search space, define the fitness function and set some heuristic settings. Final empirical

results show the effectiveness and efficiency of their approach.

 Mohammed I. Younis, Kamal Z. Zamli and Nor Ashidi Mat Isa [6] propose an efficient pairwise

strategy for generating pairwise combinatorial test set using artificial parameters and values, termed

RA and ORA, that can systematically minimize the pairwise test set generated from higher order test

parameters to lower order ones. Their paper demonstrates and compares the results against existing

strategies including IRPS, IPO, GA, ACA, Jenny and All Pairs. The Results show that ORA and RA

are performs well, and gives a minimal number of the test set than other published result and available

tools.

S.A. Ghazi and M.A. Ahmed [7] propose a GA-based technique that identifies a set of test

configurations that are expected to maximize pair-wise coverage, with the constraint that the number

of test configurations is predefined. Although the paper primarily focuses on the interaction between

The Survey on Artificial Life Techniques for Generating the Test Cases for Combinatorial Testing

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 21

software components, the idea can be applied to single code component testing. Some experiments are

also performed using their proposed approach. The results were promising.

S. Khatun, K.F. Rabbi, C.Y. Yaakub and M.F.J. Klaib [8] propose an effective random search based

pairwise test data generation algorithm named R2Way to optimize the number of test cases. The

algorithm is able to support both uniform and non-uniform values effectively with performance better

than the existing algorithms/tools in terms of number of generated test cases and time consumption.

James D. McCaffrey [9] presented the results of an investigated the generated pairwise test sets using

a genetic algorithm. Compared with published results for deterministic pairwise test set generation

algorithms, the genetic algorithm approach produced test sets which were comparable or better in

terms of test set size in 39 out of 40 cases. However, the genetic algorithm approach required longer

processing time than deterministic approaches in all cases.

J.D. McCaffrey [10] describes the results of an investigation of pairwise test set generation using a

genetic algorithm. The results illustrate that generation of pairwise test sets using a genetic algorithm

is possible, and suggest that the technique may be both practical and useful in certain software testing

situations.

Pedro Flores, Yoonsik Cheon [11] formulated the problem of finding a pairwise test set as a search

problem and applies a genetic algorithm to solve it. They also describe an open source tool called

PWiseGen for generating pairwise test sets. PWiseGen produces competitive results compared with

existing pairwise testing tools. Besides, it provides a framework and a research platform for

generating pairwise test sets using genetic algorithms.

Priti Bansal, Sangeeta Sabharwal, Shreya Malik, Vikhyat Arora, and Vineet Kumar [12] present a

method to generate initial population using hamming distance and an algorithm to find crossover

points for combining individuals selected for reproduction. They apply genetic algorithm, a meta-

heuristic search algorithm, to find an optimal solution to the pair-wise test set generation problem.

They describe the implementation of the proposed approach by extending an open source tool

PWiseGen and evaluate the effectiveness of the proposed approach. Empirical results indicate that

their approach can generate test sets with higher fitness level by covering more pairs of input

parameter values

Manisha Patil, P.J. Nikumbh [13] formulate the problem of finding a pair-wise test set as a search

problem and apply a search technique “simulated annealing” to solve it. Their empirical results

concluded that the optimal solution for their problem statement is to find the maximum number of

different pairs which are the best test set which we capture. The key contribution of their work

includes simulating annealing algorithm approach for generating the best test case set. A software for

web based and semantic based application is developed in software engineering for determining

minimized test cases.

3. PICTURE OF DIFFERENT ARTIFICIAL LIFE TECHNIQUES

A. Partical Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic approach for solving continuous

and discrete optimization problems. In particle swarm optimization, simple software agents,

called particles, move in the search space of an optimization problem. The position of a particle

represents a candidate solution to the optimization problem at hand. Each particle searches for better

positions in the search space by changing its velocity according to rules originally inspired by

behavioral models of bird flocking.

Particle swarm optimization belongs to the class of swarm intelligence techniques that are used to

solve optimization problems. Particle swarm optimization (PSO) is a computational method

that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given

measure of quality. PSO optimizes a problem by having a population of candidate solutions, here

dubbed particles, and moving these particles around in the search-space according to

simple mathematical formulae over the particle's position and velocity. Each particle's movement is

influenced by its local best known position but, is also guided toward the best known positions in the

search-space, which are updated as better positions are found by other particles. This is expected to

move the swarm toward the best solutions.

http://www.scholarpedia.org/article/Optimization
http://www.scholarpedia.org/article/Swarm_intelligence
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity

Lakshmi Prasad Mudarakola & M.Padmaja

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 22

PSO is a meta-heuristic as it makes few or no assumptions about the problem being optimized and can

search very large spaces of candidate solutions. However, meta-heuristics such as PSO do not

guarantee an optimal solution is ever found. More specifically, PSO does not use the gradient of the

problem being optimized, which means PSO does not require that the optimization problem

be differentiable as is required by classic optimization methods such as gradient descent and quasi-

newton methods. PSO can therefore also be used on optimization problems that are partially irregular,

noisy, change over time, etc. Strategy for generating the combinatorial test cases Particle Swarm

Optimization is as shown below.

Particle Swarm Optimization Strategy

B. Genetic Algorithms

Genetic Algorithms (GAs) are a class of computational procedures inspired by biological evolution.

GAs encode a potential solution to a specific problem using a simple chromosome-like data structure

and then apply operators modeled after genetic recombination and mutation to these structures in a

way that is designed to preserve essential information. GAs maintains a population of individuals each

of which consists of a chromosome/solution and a fitness value which measures how well the

individual's chromosome solves the problem. Individuals with high fitness values are selected to serve

as the basis for producing offspring solutions. Individuals with low fitness values are removed from

the population of solutions and replaced by offspring solutions.

Genetic algorithms are typically used to solve maximization and minimization problems that are

combinatorial complex and which do not lend themselves to standard algorithmic techniques. In

pseudo code, one typical form of a GA is: set generation := 0 initialize population while (generation <

maxGenerations) evaluate population fitness values sort population based on fitness if (optimal

solution exists) break select high-fitness individuals produce offspring stochastically mutate offspring

replace low-fitness individuals end while return best individual. There are many variations of the

basic algorithm structure which are possible.

Genetic algorithms merely provide a basic framework for solving a problem and the implementation

of a specific genetic algorithm which solves a specific problem requires several design decisions.

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wikipedia.org/wiki/Quasi-newton_methods

The Survey on Artificial Life Techniques for Generating the Test Cases for Combinatorial Testing

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 23

Some of the major design decisions include the following. First, a chromosome representation of a

solution to the target problem must be designed. Second, a fitness function which measures how well

a chromosome solves the target problem must be constructed. Third, stochastic algorithms to

implement genetic crossover and mutation must be designed. Additional GA design parameters

include selection of the population size, a method for determining which chromosome-solutions are

selected for reproduction, and a method for determining which chromosome solutions are selected for

removal from the population. The strategy for generating the combinatorial test cases is shown below.

Genetic Algorithm

Begin

Step 1: P = initializePopulation()

Step 2: i = 0

Step 3: while (i < MAX_GEN && !has Solution(P))

do

 calculateFitness(P)

Step 4: C = ∅ while (|C| < NUM_CROSSOVER)

do

 (p1….., pn) = selectParents(P)

 (c1……. cn) = crossover (p1… pn);

Step 5: if (mutate?) then

c1 = mutate (c1);

c2 = mutate (c2);

end

Step 6: C = C ∪ {c1; c2}

 end
Step 7: if (immigration?) then

I = createImmigrants();

end

Step 8: P = updatePopulation(P, C ∪ I)

Step 9: i = i + 1end

End

C. Ant Colony Optimization

The ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational

problems which can be reduced to finding good paths through graphs. This algorithm is a member of

the ant colony algorithms family, in swarm intelligence methods, and it constitutes some meta-

heuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis,
[1][2]

 the first

algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a

path between their colony and a source of food. The original idea has since diversified to solve a

wider class of numerical problems, and as a result, several problems have emerged, drawing on

various aspects of the behavior of ants.

ACO is a new heuristic method to solve complex optimization questions, which based on simulation

and evolution of populations. The ant colony arithmetic is a random search one, which gets optimal

solution through evolving candidate ones that composes ant colony. The arithmetic is composed of

many ants, which search solutions independency in the candidate solution space. Pheromone is left

over by ants on the solutions and can be apperceived by other ants. Ants are adapted to choose the

high-concentration path and the collectivity behavior reflects a phenomenon of information positive

feedback: the more ants passed the path, the bigger probability the late comers choose. The ants, as

the distributed intelligent body, can search optimal solutions according to the directions of artificial

pheromone trail and can make use of the heuristic information based on the questions. Additional,

there are two important mechanisms: pheromone volatilization and background behavior. Forgetting

is an advanced intelligent behavior, as a kind of which, because the pheromone will volatilize along

with the time, the pheromone will volatilize along with time to avoid the solving process running into

local optimal solution. The background behavior includes neighbor search process and collection of

local information of questions. ACO was formalized into a meta-heuristic search technique by M.

Dorigo and his co-workers in 1992.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Graph_(mathematics)
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Marco_Dorigo
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms#cite_note-1
https://en.wikipedia.org/wiki/Ants
https://en.wikipedia.org/wiki/Ant_colony

Lakshmi Prasad Mudarakola & M.Padmaja

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 24

Now ACO was widely applied for solving many combinatorial optimization problems, such as

traveling salesman problem, scheduling problems, and vehicle routing problems. The ACO can be

summarized as follows. Ants start searching for a test by initially randomly choosing tests. For each

test chosen by an ant, the quality of the test (i.e. the incremental benefit) is evaluated. Then the ant

deposits pheromone trail, i.e., marks with pheromone the levels forming the test. The quantity of

deposed pheromone is proportional to the test quality. As in nature, artificial ants tend to follow

pheromone trail. This indirect communication between ants progressively promotes the test covering

more incremental benefits.

Ant Colony optimization Strategy

.

D. Bee Colony Optimization Strategy

The Bees Algorithm is a population-based search algorithm which was developed in 2005.
[1]

 It mimics

the food foraging behavior of honey bee colonies. In its basic version the algorithm performs a kind of

neighborhood search combined with global search, and can be used for both combinatorial

optimization and continuous optimization. The only condition for the application of the Bees

Algorithm is that some measure of topological distance between the solutions is defined. The

effectiveness and specific abilities of the Bees Algorithm have been proven in a number of studies.

Common honey bees such as Apis mellifera take on different roles within their colony over time.

Young bees nurse larvae, construct and repair the hive, guard the entrance to the hive, and so on.

Mature bees typically become foragers. Foraging bees typically occupy one of three roles: active

forgers, scout foragers, and inactive foragers. Active foraging bees travel to a food source, gather

food, and return to the hive. Roughly 10% of foraging bees in a hive are employed as scouts. These

scout bees investigate the area surrounding the hive, often a region of up to 50 square miles, looking

for attractive new food sources. At any given time some foraging bees are inactive. These inactive

https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Bees_algorithm#cite_note-Pham_.26_al.2C_2005-1
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Continuous_optimization

The Survey on Artificial Life Techniques for Generating the Test Cases for Combinatorial Testing

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 25

foraging bees wait near the hive entrance. When active foragers and scouts return to the hive,

depending on the quality of the food source they are returning from, they may perform a waggle

dance to an audience of inactive foraging bees. This waggle dance is believed to convey information

to the inactive foragers about the location and quality of the associated food source. Inactive foragers

receive this food source information from the waggle dance and may become active foragers. In

general, an active foraging bee continues gathering food from a particular food source until that food

source is exhausted, at which time the bee becomes an inactive forager.

Algorithms inspired by the behavior of natural systems have been studied for decades. These

algorithms are sometimes called meta-heuristic algorithms because they provide a high-level

framework which can be adapted to solve optimization, search, and related problems, as opposed to

providing a stringent set of guidelines for solving a particular problem. A review of the literature on

algorithms inspired by bee behavior suggests that the topic is evolving and that there is no consensus

on a single descriptive title for meta-heuristics based on bee behavior. Algorithm names in the

literature include Bee System, BeeHive, Virtual Bee Algorithm, Bee Swarm Optimization, Bee

Colony Optimization, Artificial Bee Colony, and Bees Algorithm

There are many ways to map honey bee foraging behavior to an algorithm which solves a specific

optimization problem.

Each Bee object has an Act method which encapsulates the core SBC algorithm. In pseudo-code the

logic for an active foraging bee is:

if (role == Active)

(leave hive, go to food source)

examine a neighbor food source

if (quality >= current quality)

current memory := neighbor location

numberVisits := 0

else

numberVisits := numberVisits + 1

endif

(return to hive)

if (numberVisits == maxNumberVisits)

role := Inactive

numberVisits := 0

else

perform waggle dance to hive

endif

endif

4. CONCLUSION

Using combinatorial methods for either configuration or input parameter testing can help make testing

more effective at an overall lower cost. We concluded that this survey paper highlights the generation

of test cases for combinatorial testing using artificial techniques. Our survey will be useful for the

researchers and industry persons can easily navigate through the research undertaken in chosen field

of interest so that they pursue research further.

REFERENCES

[1]. Yu Lei and K.C. Tai, "In-parameter-order: a test generation strategy for pairwise testing,”

Proceedings of Third IEEE International High-Assurance Systems Engineering Symposium,

1998, pp. no. 254-261, 13-14 Nov 1998.

[2]. Xiang Chen, Qing Gu, Xin Zhang and Daoxu Chen, “Building Prioritized Pairwise Interaction

Test Suites with Ant Colony Optimization," QSIC, 9th International Conference on Quality

Software, pp.no 347-352, 24-25 Aug. 2009

[3]. Kewen Li and Zhixia Yang, “Generating Method of Pair-Wise Covering Test Data Based on

ACO”, ETT and GRS, 2008 IEEE International Workshop on Geoscience and Remote Sensing

Lakshmi Prasad Mudarakola & M.Padmaja

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 26

and International Workshop on Education Technology and Training, vol.2, pp. no. 776-779, 21-

22 Dec. 2008.

[4]. J.D. McCaffrey, "Generation of pairwise test sets using a simulated bee colony algorithm," IRI

'09, IEEE International Conference on Information Reuse & Integration, pp.no. 115-119, 10-12

Aug. 2009.

[5]. Xiang Chen, Qing Gu, Jingxian Qi and Daoxu Chen, "Applying Particle Swarm Optimization to

Pairwise Testing”, COMPSAC, 2010 IEEE 34th Annual Computer Software and Applications

Conference, pp. no. 107-116, 19-23 July 2010.

[6]. M.I. Younis, K.Z. Zamli and N.A.M Isa, “Generating Pairwise Combinatorial Test Set Using

Artificial Parameters and Values”, ITSim, 2008 IEEE International Symposium, pp. no. 1-8, 26-

28 Aug 2008.

[7]. S.A. Ghazi and M.A. Ahmed, "Pair-wise test coverage using genetic algorithms”, CEC, The

2003 Congress on Evolutionary Computation, Vol. 2, pp. no. 1420-1424, 8-12 Dec. 2003.

[8]. S. Khatun, K.F. Rabbi, C.Y. Yaakub and M.F.J. Klaib "A Random search based effective

algorithm for pairwise test data generation”, INECCE, 2011 IEEE International Conference on

Electrical, Control and Computer Engineering, pp. no.293-297, 21-22 June 2011.

[9]. James D. McCaffrey, “Generation of Pairwise Test Sets using a Genetic Algorithm”, 33rd

Annual IEEE International Computer Software and Applications Conference, 2009.

[10]. J.D. McCaffrey, "An Empirical Study of Pairwise Test Set Generation Using a Genetic

Algorithm”, ITNG, 2010 IEEE Seventh International Conference on Information Technology:

New Generations, pp. no. 992-997, 12-14 April 2010.

[11]. Pedro Flores, Yoonsik Cheon, “PWiseGen: Generating Test Cases for Pairwise Testing Using

Genetic Algorithms”, IEEE International Conference on Computer Science and Automation

Engineering (CSAE), June 2011.

[12]. Priti Bansal, Sangeeta Sabharwal, Shreya Malik, Vikhyat Arora, and Vineet Kumar, “An

Approach to Test Set Generation for Pair-Wise Testing Using Genetic Algorithms,” Search

Based Software Engineering Vol.8084, pp.no.294-299, 2013.

[13]. Manisha Patil and P.J. Nikumbh, “Pair-wise Testing Using Simulated Annealing”, 2212-0173 ©

2012 Published by Elsevier Ltd.

[14]. J.D. McCaffrey, Software Testing: Fundamental Principles and Essential Knowledge,

BookSurge Publishing, Charleston, SC, 2009.

[15]. R. Mandl, "Orthogonal Latin Squares: An Application of Experiment Design to Compiler

Testing", Communications of the ACM, vol. 28, no. 10, pp. 1054-1058, 1985.

[16]. D.M. Cohen, S.R. Dalal, M.L. Fredman, and G. C. Patton, "The AETG System: An Approach to

Testing Based on Combinatorial Design", IEEE Transactions on Software Engineering, vol. 23,

no. 7, pp. 437-443, July 1997.

http://link.springer.com/search?facet-author=%22Priti+Bansal%22
http://link.springer.com/search?facet-author=%22Sangeeta+Sabharwal%22
http://link.springer.com/search?facet-author=%22Shreya+Malik%22
http://link.springer.com/search?facet-author=%22Vikhyat+Arora%22
http://link.springer.com/search?facet-author=%22Vineet+Kumar%22
http://link.springer.com/book/10.1007/978-3-642-39742-4
http://link.springer.com/book/10.1007/978-3-642-39742-4

