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Abstract:The present paper reports results from an extensive project aiming at improved understanding of 

postglacial subalpine/alpine vegetation, treeline, glacier and climate history in the Scandes of northern Sweden. 

The main methodology is analyses of megafossil tree remnants, i.e. trunks, roots and cones, recently exposed at 

the fringe of receding glaciers and snow/ice patches. This approach has a spatial resolution and accuracy, 

which exceeds any other option for tree cover reconstruction in high-altitude mountain landscapes. The main 

focus was on the forefields of the glacier Tärnaglaciären in southern Swedish Lapland (1470-1245 m a.s.l.). 

Altogether seven megafossils were found and radio-carbon dated (4 Betula, 2 Pinus and 1 Picea). Betula and 

Pinus range in age between 9435 and 6665 cal. yr BP. The most remarkable discovery was a cone of 

Piceaabies, contained in an outwash peat cake, dating 11 200 cal. yr BP. The peat cake also contained common 

boreal ground cover vascular plant species and bryophytes. All recovered tree specimens originate from 

exceptionally high elevations, about 600-700 m atop of modern treeline positions.This implies, corrected for 

land uplift, summer temperatures, at least 3.6 °C higher than present-day standards. The current results,in 

combination with those from other Swedish glaciers, contribute to a new view on the early postglacial 

landscape and climate in high-altitude Swedish Scandes 

Keywords: Treeline, glacier, megafossils, climate change, Holocene, Swedish Scandes, Betulapubescensssp. 

czerepanovii, Pinussylvestris, Piceaabies. 

 

1. INTRODUCTION 

Recent glacier/ice patch recession in association with post-Little Ice Age climate recovery of the past 

100 years or so has exposed a plethora of previously ice-entombedmega fossil tree remains in many 

parts of the world (Nicolussi & Patzelt 2000; Hormes et al. 2001; Schlűchter & Jörin 2004; Koch et 

al. 2007, 2014; Grosjean et al. 2007;Benedicht et al. 2008; Wiles et al. 2008;Scapozza et al. 

2010;Nicolussi&Schlűchter 2012; Lee 2012). These ancient remnants derive from subglacial 

preservation sites and are currently exposed at the margin of basins presently occupied by glacier ice 

and perennial snow. Theyoffer a unique opportunity to improve our understanding about past treeline 

positions and associated plant cover characteristics and thereby indirectly provide clues to ancient 

climates. This archive, also containing numerous human and cultural artefacts, has been widely 

recognized and exploited by archaeologists (e.g. Nesje et al. 2011; Lee &Benedicht 2012;Reckin 

2013), but in Scandinavia surprisingly little payed attention to by palaeoecologists. 

In the Swedish Scandes, however, important findings of megafossil trees under above-mentioned 

circumstances, high above current treelines, have been reported and discussed in some studies 

(Kullman 2004; Öberg & Kullman 2011a; Kullman & Öberg 2013, 2015; Kullman 2017a). These 

resultshave proven accuracy in time, space and species composition, going far beyond the resolution 

of pollen analysis and other microfossil approaches (cf. Kullman 2017a) and lining up with inferences 

originating from DNA-methodologies (Parducci et al. 2012; Parducci & Tollefsrud 2016). Late-

glacial andearly-Holocenepresence of boreal tree species are evidenced (megafossils) in this way for 

restricted sites, situatedmuch higher than current treeline elevations. Hereabouts peat deposits on the 

open alpine tundra are rare and shallow, with little ability to preserve trees and other macroscopic 

plant remains from ancient times. Therefore, little has been known about the highest treeline positions 

and associated plant cover structure during the earliest part of the Holocene. The most promising 

archives for that purpose are found in glacier cirques and nivation hollows, which were ice free before 
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andbecame ice coveredin accord with the mid-Holoceneneoglacial cooling. In many cases, it is quite 

obvious that the mega fossil tree remnants have been washed out by subglacialmelt water streams 

from primary growing sites higher upslope. Some exceptional outlying records of 500-700m higher 

than present treeline, support an even higher elevational origin as a more general pattern. The possible 

generality of this supposition needs to be further elucidated in perspective of its implications for 

Holocene vegetation history and paleoclimate (Öberg & Kullman 2011a,b; Kullman & Öberg 2013, 

2015). With this background,  the present study reports efforts to sustain and further approach the 

uppermost limit of megafossil trees within an area previously well researched with respects to 

megafossil tree remnants (debris wood) occurring at glacier forefields at relatively modest levels 

above the present-day treelines (Öberg & Kullman 2011a; Kullman & Öberg 2013, 2015). 

For logistic reasons it has been judged impractical and dangerous (slippery bedrock, collapsing glacier 

fronts and moving rock slabs) to investigate these higher potential source areas in search for 

megafossils. However, during the early autumn of 2017, the present author made a tentative approach, 

the results of which are reported here. 

2. STUDY AREA 

The study was carried out within the central Swedish Scandes, in the southern part of the province 

Lapland (Fig. 1). Focus is here on the forefield of the glacier “Tärnaglaciären”, which is located to the 

Norra Storfjället massif (65° 51´N; 15° 16´E), with some peaks reaching above 1600 m a.s.l. and 

valley floors at 700-800 m a.s.l. The glacier is contained within a cirque facing SE (Fig. 2). Currently 

the glacier area is estimated to c. 0.2 km
2
, with an upper and lower margin at 1470 and 1245 m a.s.l., 

respectively. By the late 19th and early 20th century, the glacier was mapped by Gavelin (1897, 

1910), who estimated its area to 0.5 km
2
. Thus, the glacier has lost more than 50% of its area during 

the past 100 years or so, and the lower front has withdrawn by approx. 175 m in elevation. Figure 

3depicts the maximum extent of the glacier by the late 19th century, manifested in the form of an 

incomplete moraine bow in an outwash lake below the glacier, 1070 m a.s.l. (Fig. 3) (cf. Gavelin 

1910; Lindgren & Strömgren 2001).Substantial frontal retreat and thinning have taken place since the 

late 1990s and up to the present day (Fig. 2) 

On the slope below the glacier, a large snow/ice patch extends down to theoutwash lake (Fig. 2). The 

size of this patch varies on an annual basis, depending on prevailing weather conditions. Prior to the 

present study, most mega fossil recoveries have been made in association with melt water streams 

close to the lower fringe of this patch. 

The bedrock is of Cambro-Silurian origin, mostly mica schists. Quaternary deposits embrace 

glacifluvial accumulations, till and peat. A weakly sub oceanic climate characterizes the area. The 

nearest meteorological station is Hemavan, 475 m a.s.l., situated in the Uman River Valley, c. 10 km 

southwest of the study site. The mean temperature forJune-August and the year are 10.1 and -0.4°C, 

respectively. Annual precipitation is 680 mm. 

Currently, mountain birch (Betulapubescens ssp. czerepanovii) constitutes the upper treeline in this 

area, 790 m a.s. l. (Fig. 4). The nearest treeline of Norway spruce (Piceaabies) and Scots pine 

(Pinussylvestris) are at 710 and 690 m a.s.l., respectively. During the past 100 years, the treelines of 

those species have advanced by a maximum of more than 200 m (Kullman & Öberg 2009), which 

appears to have taken them to a position uniquely high for the past 7000 years or so (Kullman 2017b). 

Overviews of the structure and dynamics of the treeline eco tone in the Scandes are provided by 

Kullman (2010) and Wielgolaski et al. (2017). 

 

Fig1.Map showing the location of the study area (●) in northern Sweden. 
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Fig 2.The glacier Tärnaglaciären, the snow/ice patch and outwash lake below (1070 m a.s.l.). A.  Prospect from 

southeast, 1999-09-06 (Photo: F. Lindgren & M. Strömgren). B. Virtually the same view 2017-09-01. The 

glacier has perceivably thinned since 1999"Photo: 2017-09-01". 

 

Fig3.Theoutwash lake below the glacier, 1070 m a.s.l. By the late 19th century, the lower glacier front was 

located at the morainic ridges, protruding above the water surface (Gavelin 1910)Photo: 2017-09-01. 

 

 

Fig4.The current treeline of Betulapubescens ssp. czerepanovii, 790 m a.s.l., right to the east and downslope of 

Tärnaglaciären (arrow). The solitary birch copse is located at the bank of the main meltwater stream from the 

glacier"Photo: 2017-09-01". 
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3. METHODS 

During the autumn of 2017 the fore fields adjacent to the lower and lateral margins of the glacier 

Tärnaglaciären were thoroughly scrutinized for the presence of out washed mega fossils and other 

identifiable plant remains. Recovered specimens were wrapped in aluminium foil and stored frozen 

until delivery to the dating laboratory. Species identification was unambiguous in all cases, based on 

bark fragments, cone and leaf characteristics. All recovered woody remnants were sampled and 

altitudes were determined by a GPS navigator (Garmin 60CS), calibrated against distinct points on the 

topographical map. Reported altitudes are rounded off to the nearest 5 m. The nomenclature of 

vascular plants follows Öberg et al. (2017). 

Radiocarbon dating of recovered specimens has been performed by Beta Analytic Inc., Miami, USA. 

All original radiocarbon dates and time-scales in running text and figures are converted to calendar 

years before present (cal. yr BP), with “present” = AD 1950, based on IntCal13 (Reimer et al. 2013) 

and for the sake of simplicity, they are cited as “intercept values”.Outwash peat cakes and their 

contained macrofossils (e.g. cones, leaves and bryophytes) were dated indirectly on the basis of 2 cm 

thick bulk peat slices. 

4. RESULTS 

This study adds seven new dates of megafossil tree remnants (4 Betula, 2 Pinus, 1 Picea) to a 

previous sample of 21 specimens from the same glacier (12 Betula,  9 Pinus) (Kullman & Öberg 

2015). Individual dates are given in Table 1 and the samples are depicted in Figures 5-7. They range 

in elevation between 1410 and 1275 m a.s.l., which is about 600 and 700 m higher than the nearest 

present-day treelines of these species. The ages all represent the early Holocene, c. 11200 to 6700 

before present. 

Table 1.Radiocarbon dates of recovered megafossils. Relative elevation refers to the difference in altitude 

between the sampling site and the nearest present-day treeline of the concerned species. 

 

 

Fig 5. Recovered and dated megafossils of Betulapubescens. A. 9365 cal. yr BP. B. 9450 cal. yr BP. C. 6665 

cal. yr BP. D. 8780 cal. yr BP 

Altitude Relative elevation Species Lab. code Radiocarbon age Calibrated age Intercept Size Material

m a.s.l. m 14C yr BP BP 1 SD cal. yr BP cm

1410 700 Betula Beta-474257   8330±30 9447-9273 9365 45 wood

1395 685 Betula Beta-474258  8400±30 9495-9397 9450 40 wood

1380 690 Pinus Beta- 474259  8020 ±30 9010-8848 8900 37 wood

1320 630 Pinus Beta- 474254 8380±30 9779-9371 9435 19 wood

1295 585 Betula Beta-474255 5850±30 6743-6603 6665 21 wood

1275 565 Betula Beta-474252 7910±30 8791-8602 8780 18 wood

1370 630 Picea Beta-474251 9760±30 11 238-11 167 11 200 14 Cone + peat
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Fig6. Recovered and datedmegafossils of Pinussylvestris. A. 8900 cal. yr BP. B. 9435 cal. yr BP. 

A cone of Piceaabies, contained in a peat cake, was dated 11 200 before present at an elevation, 

almost as high as the uppermost dated birches and pines (Fig. 7).The cone contained a few heavily 

decayed seeds. 

This is the highest position, relative to its modern treeline, ever recorded for postglacial spruce. In 

addition, this peat sampleshowed macrofossils of the following identifiable ground cover taxa: 

Empetrumhermaphroditum, Vacciniummyrtillus, Vacciniumvitis-idaea, Rhododendron tomentosum, 

Hylocomiumsplendens, Pleuroziumschreberi, Dicranumsp., Sphagnum sp. All samples of Betula and 

Pinusdisplayed a size and form which indicated that they originated from tree-sized individuals. In the 

case of Piceaabies(a cone) no such inference could be made. 

 

Fig7. A.Peat cake which contained macrofossils of ground cover species, 1370 m a.s.l. B.Cone of Piceaabies 

dissected from the peat cake. 

5. DISCUSSION 

The present study sustainsa generic pattern for the entire Swedish Scandes (cf. Öberg & Kullman 

2011a; Kullman & Öberg 2013, 2015). As evident from Fig. 5A, the highest date of Betula (1410 m 

a.s.l,) is obtained from an outwash stream protruding from beneath the glacier.Obviously it originates 

from a primary growing site further up valley, more than 700 m above today´s treeline. 

Conservatively drawing on the latter figure and a summer temperature lapse rate of 0.6 °C per 100 m 

elevation (Laaksonen 1976), could apriori mean that, summer temperatures were at least 4.2 °C 

warmer than present around 9500 year before present. However, glacio-isostatic land uplift by at least 

100 m since that time (Möller 1987; Påsse & Anderson 2005) implies that this figure has to be 

reduced to 3.6 °C higher than present-day levels, i.e. first decades of the 21st century. Evidently, this 
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was the warmth peak of the Holocene, hitherto. This inference concurs with paleoclimaticre 

constructions from Europe and Greenland (Korhola et al. 2002; Bigler et al. 2003; Paus 2013; Luoto 

et al. 2014; Väliranta et al. 2015) and complies with theoretical calculations based on variations in 

Earth´s orbital parameters and associated gradual change in summer insolation (Berger &Loutre 1991; 

Esper et al. 2012). It contrasts with commoninterpretations suggesting a much later thermal optimum 

(Berglund et al. 1996; Seppä& Birks 2002). The latter inferences are based on pollen analyses, which 

in some cases are proved to deliver less reliable vegetation history details and temperature estimates 

(Paus 2013; Elven et al. 2013; Luoto et al. 2014; Kullman 2017a). 

The youngest megafossil date, 6665 cal. yr BP, suggests that the concerned glacier, like many others, 

did not exist prior to that date (cf. Bakke et al. 2005). Dated peat remains indicated that neoglacial 

instatement of this particular glacier ice took place after 3890 cal. yr BP (Kullman&Öberg 2013). 

Available dates are too few to allow any firm conclusions as to the zonation patterns during the early 

Holocene. Anyhow, Betula appears to have been the highest ascending tree species. Such a pattern 

also emerges from earlier more extensive megafossil studies, although a distinct subalpine birch forest 

belt, as we know it today, appears to have formed later on (Kullman 2013). In that context, it is of 

some interest to note that the nearest living birches (tree-line markers), in the form of a dense and 

isolated copse, are located within the main outwash stream furrow from the glacier here concerned 

(Fig. 4). This pattern is compatible with an earlier inference, based onmegafossil performance, that 

trees (and possibly other plant species, have in general spread downslope from primary“occurrence 

sites” at high elevations, e.g. empty glacier cirques (Kullman 2002). 

Information from ground cover macrofossil plant species contained in a peat cake (Fig. 7A), indicate 

that the recovered megafossils grew in a matrix of dwarf shrubs and bryophytes with present-day 

quite ordinary boreal forest affinities. Predominance of Sphagnum spp. could indicate that the 

megafossils were preserved by peat growth prior to the final burial by glacier ice. 

Recent data on early Holocene presence of Piceaabies at high elevations in the Scandes comply 

temporally with megafossil and some recent pollen studies from different parts of the Scandes 

(Kullman 1996, 2000;Segerström& von Stedingk 2003;Öberg&Kullman 2011b; Paus et al. 2011; 

Kullman & Öberg 2013, 2015).This pattern contrasts with traditional inferences from pollen 

data,suggesting a mid- or late Holocene wave-like spread of spruce from the east (e.g. Moe 1970; 

Hafsten 1992; Huntley & Birks 1983;Giesecke 2005;Seppä et al. 2009).Recent DNA analyses in lake 

sediments andemergent patterns ingenetic structure of extant spruce populationssupport the contention 

ofLate-glacial andearly Holocene presence of spruce enclaves in western and northern Scandinavia 

(Parducci et al. 2012). Furthermore, multimillennial old prostrate spruces, prevailing high above the 

current treeline in some mountain areas, provide support to the latter option (Öberg & Kullman 

2011b; Kullman 2015).  

Apparently, these peripheral spruce occurrences wereconfined to restricted, widespread and 

particularly favorable habitats, acting as dispersal nodes during later parts of the Holocene. This 

option was originally inferred from megafossil spruce data gathered along the entire Swedish Scandes 

(Kullman 1996, 2001, 2008, 2017a; Kullman & Engelmark 1997), a mechanism reiterated by 

Väliranta et al. (2011) on evidence from north-eastern European Russia. 

Importantly, megafossil data of the kind accounted for above, in combination with DNA analyses in 

soils and lake sediments, urge pollen analysts to adopt a less conservative attitude when interpreting 

trace amounts of pollen.Evidently, much of the commonly narrated pollen-based postglacial history of 

subalpine/alpine regions has to be reconsidered in the light of emerging megafossil evidence .These 

latter results, in combination with those, analogously derived, from other Swedish glaciers, provide a 

new view on the early postglacial landscape and climate in high-altitude Swedish Scandes. 

Paleoecologists are forced to reconsider standard views on Late-Glacial and early Holocene 

environments in the high mountains (cf. Anderson et al. 2009; Horáček et al. 2015). This view is 

strongly substantiated by the present paper. 
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