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1. INTRODUCTION 

By the multiphase method of Prof. Alfred I. Nakorchevskii [1] the characteristics of mixture ( )
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Following to this approach, the analog of the Navier-Stokes equations in a boundary layer 

approximation is: 
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where is the sum by mute index i, which belong to a phase i. In the stationary equations of 

incompressible liquids (3) written in a cylindrical coordinate system are: p- pressure, ρ- density, u,v- 

the longitudinal and transversal velocity components, 
i

 - turbulent stress for a phase i. Index m belongs 

to the values at the axis of the flow (symmetry axis). All values are averaged on the given interval by 

time.  

One liquid flow is going from the nozzle of the radius r0  with velocity u01 (the velocity profile is 

supposed uniform) in surroundings occupied by the other liquid (phase 2) being in a rest. The structure 

of a jets mixing with surrounding liquid is simplified according to the known scheme [2]. First, the 
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initial part of the length xi with the approximately linear boundaries for the conical surface (in 

cylindrical coordinates) of the internal potential core of a first phase and the external interface (conical 

too) are considered as the boundaries of the mixing area and the central potential core, correspondingly. 

The mixing turbulent zone between the above surfaces contains drops and fragments of the phases as 

far as immiscible liquids have behaviors like the separate phases, with their interfacial multiple surfaces 

interacting in all such locations (exchange of mass, impulse, energy among the phases). Close to the 

external interface, there is a flow of a surrounding liquid with some drops of the first phase, while, in 

turn, close to the boundary of the potential core there is a flow of the first phase with the drops of a 

second phase. As far as we have mutually immiscible liquids, the mixing zone contains two phase 

mixture in a turbulent flow. After an initial part of the mixing zone when all first phase in a potential 

core is spent, the short transit area is preparing the ground part of the turbulent two-phase jet, where 

both phases are well mixed across all layer. Usually the spatial averaging of the mass, momentum and 

energy conservation equations is performed using the concept of volumetric phase content for 

description of multiphase flows [3-6], which does not fit well to experimental study of the individual 

phase movement in a mixture. The method [1] was developed including the special experimental 

technology and micro sensor for the measurements in two-phase flows. In [4, 5] fundamentals and 

analysis of the different methods for modeling of the multiphase systems can be found. Actually, all 

known multiphase methods are well connected including [1], and the parameters averaged by time can 

be transformed to the ones averaged by space [3-6]. 

1.1. Function-Indicator of the Phases in Two-Phase Flow 

External interface of the mixing zone is determined zero longitudinal velocity of the second phase and 

transversal velocity of the first phase (the second phase is injected from the immovable surrounding 

into the mixing zone). The function-indicator of the first phase B1(t) is zero at the external interface 

because the first phase is absent in surroundings. Similar, the function-indicator B2(t) is zero on the 

interface of the potential core, which is the boundary of the first phase (from the nozzle). The boundary 

conditions are [1]: 

y=y0,  ui= u0i,  vi=0,  τi=0,  B1=1;       y=y0+δ,  ui= 0,  vi=0,  τi=0,  B1=0.                                                 (4) 

The turbulent stress in the phases is stated by the “new” Prandtl’s formula   

τi=ρi i
 δumi /

i
u y   ,                                                                                                                                  (5) 

where 
i

  is the coefficient of turbulent mixing for i-th phase, δ is the width of the mixing layer. 

1.2. Polynomial Approximations of the Flow Velocities and Function-Indicator 

The polynomial approximations for the velocity profiles and other functions in the turbulent mixing 

zone have been obtained based on the boundary conditions (4) in the form: 
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B to its next approximation from the condition that derivative by   at 1   is zero up to 

(n+1)-th order.  

2. THE EQUATIONS OF HETEROGENEOUS TWO-PHASE JET AT ITS INITIAL PART 

2.1. Integral Correlations for the Initial Part of a Jet Flow 

The integral correlations were derived for the two-phase turbulent jet on the initial part as follows [1]: 
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Here the first equation (9) was got integrating by y the mass conservation equation, the second and the 

third – integrating the momentum conservation for the total flow of two-phase mixture for y=y0+δ and 

y=y*, respectively. The polynomial approximations for the functions u2, B1 on a ground part of the jet 

keep the same but for the function u1 approximation is as follows 

2 3
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u u                                                                                                                                     (10) 

2.2. Integral Correlations for the Ground Part of a Jet 

The integral correlations for the ground part of a jet flow obtained similarly to the above as follows [1]: 
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where the first is the equation of the mass conservation for the first phase, the second and the third – 

the momentum conservation equations for the total and for the part of the cross section, respectively, 

according to the methodology [2]. And the momentum equation on the jet’s axis (y=0) is used too: 
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The mathematical model including the ordinary differential equations (9), (11), (12) by longitudinal 

coordinate x is implemented for analysis and numerical simulation on the computer the basic features 

of the stationary turbulent two-phase jet of two immiscible liquids. The function-indicator B1 shows 

how much is a presence of the first phase in a selected point of mixing zone. Solution of the task gives 

parameters of the flow together with their belonging to a particular phase. 

2.3. Dimensionless Form of the Outgoing Equation Array and the Profiles of Basic Parameters 

The equation array (9) with the boundary conditions (4) is used for numerical simulation of the turbulent 

two-phase jet on its initial part. For this, the equations (9) are transformed to the following 

dimensionless form with the scales r0, δ, u0i for the longitudinal and transversal coordinates and velocity, 

respectively: 
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Except the above, for the dimensionless parameters, we retain the same notations as for the dimensional 

ones. Only here in (14) it is stated for clarification of the dimensionless notations. 

The sliding factor s0 is supposed to be constant and the values of the parameters at η=η*<1 are signed 

with a star *. The system (13) must satisfy the following boundary conditions 

ζ=0,   y0=1,  δ=0;       ζ= ζi,  y0=0,   δ = δi;                                                                                              (15) 

where ζi, δi are the dimensionless length of a jet and its maximal radius (at the end of the initial part).  

3. NUMERICAL SIMULATION OF THE INITIAL PART OF THE TWO-PHASE JET 

3.1. Basics of the Turbulent Heterogeneous Jet on Initial Part 

A solution of the boundary problem (13)-(15) allows obtaining the functions um1(ζ), Bm1(ζ), δ(ζ) and 

h(ζ) by the modeling parameters i0, 2 1
 . The system (13) contains two algebraic and one differential 

equation. From the algebraic equation array the functions y0(h), δ(h) are got. And then the differential 

equation is solved numerically. The range of the function’s h(ζ) variation is determined by substitution 

of the boundary conditions in the functions y0(h), δ(h), so that we obtain the next: 
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3.2. The Results of Computer Simulations for the Oil Jet Spreading in Water 

The results of numerical simulations are presented below. For i0=0.80 (water jet spreading in oil pool), 

κ21=0.5 the results are given in Figs 1-3 in two different scales to see clear the behaviors of the functions 

on their distance from the nozzle. It was noted that with increase of turbulent mixing coefficient the 

initial part of the jet is shortened. Here 
1i
x  =1.55 in figs, afterwards it is not real, because the initial 

part of the jet is finished, 
0

0 ,
i

y    . If turbulent mixing coefficient for water is 100 times higher 

than the laminar one, κ1=0.1, then 
1i
x  =1.55 means 1 5 .5x  , so that the initial part of the jet is 

just 15.5 radiuses of the jet by these parameters: i0=0.8, κ21=0.5. Then similar calculations are presented 

in Figs 4-6 for κ21=1.0 and 5.0. 

 

Fig1. The width of potential core y0 (ζ) in two different scales for parameters: i0=0.8, κ21=0.5 
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Fig2. The width of mixing layer δ (ζ) in two different scales for parameters: i0=0.8, κ21=0.5 

 
Fig3. The function h(ζ) in two different scales for parameters: i0=0.8, κ21=0.5 

For i0=0.80, κ21=1.0 (with increase of turbulent mixing coefficient that initial part is shortened), 
1i
x 

=1.0 in figs, afterwards it is not real, because the initial part of the jet is finished, 
0

0 ,
i

y    . If turbulent 

mixing coefficient for water is 100 times higher than the laminar one, κ1=0.1, then 
1i
x  =1.0 means 

1 0x  , so that the initial part of the jet is just 10 radiuses of the jet by i0=0.8, κ21=1.0 (Figs 4-6): 

 
Fig4. The width of potential core y0 (ζ) in two different scales for parameters: i0=0.8, κ21=1.0 

 
Fig5. The width of mixing layer δ (ζ) in two different scales for parameters: i0=0.8, κ21=1.0 
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Fig6. The function h(ζ) in two different scales for parameters: i0=0.8, κ21=1.0 

For i0=0.80, κ21=5.0 the results are presented in Figs 7-9, 
1i
x  =0.26. If turbulent mixing coefficient 

for water is 100 times higher than the laminar one, κ1=0.1, then 
1i
x  =0.26 means 2 .6x  : 

 

Fig7. The width of potential core y0 (ζ) in two different scales for parameters: i0=0.8, κ21=5.0 

 

Fig8. The width of mixing layer δ (ζ) in two different scales for parameters: i0=0.8, κ21=5.0 

 

Fig9. The function h(ζ) in two different scales for parameters: i0=0.8, κ21=5.0 
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3.3. The Results of Computer Simulations for the Water Jet Spreading in Oil 

For i0=1.2, κ21=1.0 the results of computer simulation are presented in Figs 10-12. With increase of 

turbulent mixing coefficient the initial part of the jet is shortened as well, 
1i
x  =0.86 in figs, 

afterwards it is not real, because the initial part of the jet is finished, 
0

0 ,
i

y    . If turbulent mixing 

coefficient for water is 100 times higher than the laminar one, κ1=0.1, then 
1i
x  =0.86 means 

8 .6x  , so that the initial part of the jet is just 8.6 radiuses of the jet by i0=1.2, κ21=1.0: 

 

Fig10. The width of potential core y0 (ζ) in two different scales for parameters: i0=1.2, κ21=1.0 

 

Fig11. The width of mixing layer δ (ζ) in two different scales for parameters: i0=1.2, κ21=1.0 

 

Fig12. The function h(ζ) in two different scales for parameters: i0=1.2, κ21=1.0 

As shown in Figs 1-12 above, the length of the potential core and the width of the mixing layer depend 

on the density ratio and turbulent mixing coefficient. The calculations allow choosing the right regime 

and optimal characteristics in each specific case. Also the function h is used to determine the phase 

distribution across the mixing layer, which is important for analysis of the mixing processes. This paper 

continues the previously done modeling of peculiarities of turbulent heterogeneous jets of mutually 

immiscible liquids [1, 7]. 
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4. THE CONCLUSION 

The initial part of the turbulent heterogeneous two-phase jet of two mutually immiscible liquids was 

numerically simulated. Two cases were considered: jet of water spreading in the pool of oil and vise 

versa jet of oil spreading in the pool of water. A few different available turbulent mixing coefficients 

have been chosen for modeling. In petroleum business, it may be useful for precise description of the 

mixing process including phase distribution, which can be the new valuable opportunity for technical 

estimations and analysis. 
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