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1. INTRODUCTION AND METHODOLOGY 

1.1.  The Method of Prof. A.I. Nakorchevski for Heterogeneous Turbulent Jets 

The first attempt to develop a method, which naturally reflects the most important features of the 

flows of two or more immiscible liquids like a water and an oil was the one by Prof. A.I. 

Nakorchevski [1]. The characteristics of the mixture ( )la t  (mass, velocity, impulse, etc.) of the 

corresponding characteristics of different phases ( )l

ia t in a multiphase flow was proposed to be 

expressed as follows  
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where ( )iB t  was introduced as co-called function-indicator determined as 
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With this approach, the analog of the Navier-Stokes equations in a boundary layer approximation was 

derived: 
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Abstract: The oil-water flows are multiphase because these liquids are mutually immiscible; therefore such 

flows are difficult for mathematical modeling and experimentalstudy. Peculiarities of the turbulent two-phase 

and multiphase flows of the mutually immiscible liquids and averaged differential equations for their 

modeling are considered. Such equations were first derived by Prof. A.I. Nakorchevski as an alternative to a 

number of the well-known averaged multiphase dynamics equations. The main difference of the new method 

was in an averaging of the Navier-Stokes equations by phases and components in time instead of the widely 

spread spatial averaging in multiphase mechanics. What was more, the introduction of the so-called function-

indicator of the phases in a flow allowed recognizing the phases in their movement in a multiphase mixture, 

both theoretically and experimentally. For the experimentalstudy, the special micro sensor was invented and 

created, which was successfully applied. In this paper, the method of Nakorchevski is described in application 

to some multiphase tasks, and a discussion is presented as concern to advantages of the method for study of 

turbulent two-phase flows of water-oil immiscible mixture, as well as many other similar mixtures, where it is 

important to know the peculiarities of the phases’ movement and their mixing in a multiphase flow. 
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where is the sum by mute index i, which belong to a phase i. In the stationary equations of 

incompressible liquids (3) written in a cylindrical coordinate system are: p- pressure, ρ- density, u,v- 

the longitudinal and transversal velocity components, i - turbulent stress for a phase i. Index m 

belongs to the values at the axis of the flow (symmetry axis). All values are averaged on the given 

interval by time. 

1.2. Schematic Representation of Turbulent Jet of Two Immiscible Liquids 

The schematic representation of the turbulent two-phase flow of two immiscible liquids is given in 

Fig. 1: 

 

Fig1. The structural scheme of the two phase jet 

One liquid flow is going from the nozzle of the radius r0 with velocity u01(the velocity profile is 

supposed simple uniform) in surroundings occupied by other liquid (phase 2) being in a rest. The 

structure of a jets mixing with surrounding liquid according to the Fig. 1 is simplified according to a 

traditional scheme [2]. First, the initial part of the length xi with the approximately linear boundaries 

for the conical surface (in cylindrical coordinates) of the internal potential core of a first phase and the 

external interface (conical too) are considered as the boundaries of the mixing area and the central 

potential core, correspondingly. The mixing turbulent zone between the above surfaces contains drops 

and fragments of the phases as far as immiscible liquids have behaviors like the separate phases, with 

their interfacial multiple surfaces interacting in all such locations (exchange of mass, impulse, energy 

among the phases).Close to the external interface, there is a flow of a surrounding liquid with some 

drops of the first phase, while, in turn, close to the boundary of the potential core there is a flow of the 

first phase with the drops of a second phase. As far as we have mutually immiscible liquids, the 

mixing zone contains two phase mixture in a turbulent flow. After an initial part of the mixing zone 

when all first phase in a potential core is spent, the short transit area is preparing the ground part of 

the turbulent two-phase jet, where both phases are well mixed across all layer. 

Normally for description of multiphase flows the spatial averaging of the differential equations of 

mass, impulse and energy conservation is performed using the concept of volumetric phase content 

[3-6], which does not fit so well to experimental study of the separate phase movement in a mixture as 

the approach proposed in [1], where the special experimental technology and micro sensor for some 

measurements in two-phase flows has been developed as well. In [4, 5] fundamentals and analysis of 

the different methods for modeling of the multiphase systems can be found. Actually, all known 

methods of multiphase methods are well connected including the one in [1], and the parameters 

averaged by time can be easily transformed to the ones by [3-6]. 
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1.3. The Function-Indicator of the Phases and Parameters of Heterogeneous Flow 

The external interface of the mixing zone is determined zero longitudinal velocity of the second phase 

and transversal velocity of the first phase (the second phase is sucked from immovable surrounding 

into the mixing zone). The function-indicator of the first phase B1(t) is zero at the external interface 

because the first phase is absent in surroundings. Similar, the function-indicator B2(t) is zero on the 

interface of the potential core, the boundary of the first phase going from the nozzle. In a first 

approach, an influence of the mass, viscous and capillary forces are neglected. With an account of the 

above-mentioned, the boundary conditions are stated as follows [1]: 

y=y0,ui= u0i,vi=0, τi=0, B1=1;y=y0+δ,  ui=0,  vi=0,  τi=0,  B1=0.                                                             (4) 

The turbulent stress in the phase is stated by the “new” Prandtl’s formula   

τi=ρi i δumi /iu y   ,                                                                                                                              (5) 

where i is the coefficient of turbulent mixing for i-th phase, δis the width of the mixing layer. 

1.4. The Polynomial Approximations of the Flow Parameters Across the Layer of a Jet 

The polynomial approximations for the velocity profiles and other functions in the turbulent mixing 

zone have been obtained based on the boundary conditions (4) in the form: 

3 4

1 01/ 1 4 3 ,u u    
                                                                                                                       

(6) 
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where h(x)=  2 2

1 0
/B





   is an interesting function, which determines a transition of the piecewise 

continuous function-indicator 
( )

1

n
B to its next approximation, determined from the condition that the 

derivative by with respect to a point 1  be equal to zero up to (n+1)-th and including order. 

2. GOVERNING EQUATIONS FOR THE HETEROGENEOUS TWO-PHASE JET 

2.1. Integral Correlations for the Initial Part of a Jet Flow 

Based on the above considered approximations the integral correlations have been derived for the 

two-phase turbulent jet on the initial part according to the structural scheme in Fig. 1 [1]: 
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The first equation in (9) was got integrating by y the mass conservation equation, the second and the 

third ones – integrating the impulse conservation for the total flow of a two-phase mixture for 

y=y0+δand y=y*, respectively. The polynomial approximations for the functions u2, B1 on a ground 

part of the jet keep the same but for the function u1approximation is as follows 

2 3

1 1/ 1 3 2 ,mu u    
                                                                                                                     

(10) 

2.2. Integral Correlations for the Ground Part of a Jet Flow 

The integral correlations for the ground part of a jet obtained similarly to the above described initial 

part are as follows [1]: 
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where the first is the equation of the mass conservation for the first phase, the second and the third – 

the momentum conservation equations for the total and for the part of the cross section, respectively, 

according to the methodology [2]. And the momentum equation on the jet’s axis (y=0) is used too: 
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The mathematical model including the ordinary differential equations (9), (11), (12) by longitudinal 

coordinate xis implemented for analysis and numerical simulation on the computer the basic features 

of the stationary turbulent two-phase jet of two immiscible liquids. The function-indicator B1 shows 

how much is a presence of the first phase in a selected point of mixing zone, which can be directly 

compared to an experimental data by the two-phase sensor. Therefore, a solution of the task may give 

both parameters of the flow together with their belonging to a particular phase. 

2.3. Dimensionless form of the outgoing equation array and the profiles of basic parameters 

The equation array (9) with the boundary conditions (4) is used for numerical simulation of the 

turbulent two-phase jet on its initial part. For this, the equations (9) are transformed to the following 

dimensionless form with the scales r0, δ,u0i for the longitudinal and transversal coordinates and 

velocity, respectively: 
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Except the above, for the dimensionless parameters, we retain the same notations as for the 

dimensional ones. Only here in (14) it is stated for clarification of the dimensionless notations. 

The sliding factor s0is supposed to be constant and the values of the parameters at η=η*<1 are signed 

with a star *. The system (13) must satisfy the following boundary conditions 

ζ=0,   y0=1,  δ=0;  ζ=ζi,  y0=0,   δ=δi;                                                                                                   (15) 

where ζi, δi are the dimensionless length of a jet and its maximal radius (at the end of the initial part).  

By the computed from the above boundary problem (13), (15) functions y0 (ζ), δ(ζ), h(ζ)we can find 

all the other characteristics of the jet flow for the stated values of the main parameters of the model i0, 

1 , 2 . The first parameter is slightly indefinite due to difficulties with exact estimation of the 

phases’ sliding, while the other two are known from the experimental studies but only for specific 

conditions. In general, for each specific case the, the coefficients of turbulent mixing 1 , 2  may be 

different, and it’s the problem to estimate them correctly. This is the main problem with validation of 

the mathematical model using comparison with the experimental data. What is the main advantage 

here in the model, is the possibility to have all characteristics of a flow together with their belonging 

to a particular phase through the functions B1, B2. 

The transversal velocities’ distributions, interface interactions, the coefficients of the volumetric q and 

mass ejection g and kinetic energy ei for the phases in a flow are computed by the main characteristics 

obtained as above mentioned [1].For the short transient part of the jet there are no developed 

substantiated scheme, therefore it is not under consideration here, just short transient and then the 

ground part is considered, where the method is well elaborated and supported with the experimental 

data [1, 2]. The dimensionless equation array for the ground part of the turbulent two-phase jet (11), 

(12) is the next 
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A dash means a derivative by η, star * means a value by η=η*<1, xt is the length of a transient part of a 

jet flow. It is assumed that um2=s0um1 (s0=const), which means that sliding of the phases is preserved 

the same as for the initial part of a jet. For the dimensionless parameters, we retain the same notations 

as for the dimensional ones as before. The boundary condition for the equation array (17) are stated in 

a form 

ζ=0, um1=1, Bm1=1,  δ=δt;       ζ= ¥,  um1=0,  Bm1=0,   δ=¥;                                                                   (18) 

δt is a radius of the jet at the transient cross section. 

3. SOLUTION OF THE BOUNDARY PROBLEM AND NUMERICAL SIMULATION 

3.1. Basics of the Turbulent Heterogeneous Jet on Initial Part 

A solution of the boundary problem (16), (18) allows obtaining the functions um1(ζ), Bm1(ζ),δ(ζ)and 

h(ζ) by the modeling parameters i0, 21 . And similar to the initial part, here it is also available to 

compute the distribution of all parameters of a flow. Computational experiments reveal basic features 
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of the flows by the initial parameters and the conditions stated. For the initial part of a jet, the velocity 

distributions for the phases (u1, u2) and function-indicators of the phases (B1, B2) are stated, as well as 

the values of parameters at the cross section of the nozzle. The solution can be done as follows. The 

system (13) contains two algebraic and one differential equation. From the algebraic equation array 

the functions y0(h), δ(h) are got, and then the differential equation is expressed in a standard form 

dh/dζ=F(h(ζ),i0, 21 ),                                                                                                                          (19) 

prepared for a numerical solution. Certainly, the equation array (13) could be solved numerically in 

general but the way we applied is more comprehensive for understanding the basic features of the 

system, with as much as possible analytical expressions showing the explicit functions. 

The range of the function’s h(ζ) variation is determined by substitution of the boundary conditions in 

the functions y0(h),δ(h), so that we obtain the next: 
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h0(i0), hi(i0) computed from the (21) are presented in Fig. 2. As it is observed, the functions have the 

breaks at the transition points of the permanent characteristic function 𝐵1
(𝑛)(𝜂, ℎ)from the one regional 

approximation to the other one (a first derivative has break at those points). It is impossible to get a 

common approximation for the function B1(𝜂, ℎ) satisfying the boundary conditions in all range by 

parameter i0 (due to requirement of variation of function B1 in the range from 0 to 1). Calculations 

have shown that there no substantial difference in the final results of the numerical solution at the 

points of the function B1(𝜂, ℎ) transformation, so that this approach is attainable. 

 

Fig2. Functions hi (i0) and δi(i0) 

Substitution of the values hi(i0)from (21) into the equation (20) results in a relation for the radius of a 

jet at the end of the initial jet’s partδi(i0). The equations (20) determine the functions y0(ℎ), δ(ℎ) in the 

range ℎ ∈ [ℎ0,ℎ𝑖], which are monotonous and close to the linear ones by i0over 5 being rapidly falling 

by i0below 1. 

3.2. Basics of the Turbulent Heterogeneous Jet on the Ground Part 

The ground part of a jet is described by the equations (16) with the boundary conditions (18). From 

the first two equations yields 
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



  


  
, 0 22 0 22 12

1 12 20 2 2 2

1 1

2
m

m m

B
Zu Zu

i i

Z

  
 

 


   ,              (22) 

   11 22 12 21 0 11 22 12 212Z i             . The condition ζ= ¥, Bm1=0 leads the following: ζ= ¥, 

um1δ
2=¥, um1δ=const, so that follows: 
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lim
𝜁→∞

∝12

𝑍
(2𝑖0𝛽20 −

1

𝑢𝑚1
2 𝛿2

) = 0, 

where from with account of ∝12≠ 0 yields 

lim
𝜁→∞

𝑢𝑚1
2 𝛿2 =

1

2𝑖0𝛽20
≈ {

33, 𝑖0 = 0.3
10, 𝑖0 = 1.0
1.2, 𝑖0 = 8.0

,  ℎ∞ = lim
𝜁→∞

ℎ ≈ {

−70, 𝑖0 = 0.3
−31, 𝑖0 = 1.0
−18, 𝑖0 = 8.0

. 

The value  ℎ∞ is outside the region of the function’s ℎ variation determined by ℎ = ℎ𝑡, where the 

ground part of a jet starts. Therefore function B1is continuous for each value 𝑖0 (its first derivative is 

piecewise continuous). It is changing its approximation with transformation from the one to another 

region by h. Thus, after simple transformations the outgoing equation array yields the system of two 

ordinary first order differential equations with the corresponding boundary conditions: 

 
    

   

'' ''

1 1 0 21 1 2''1 1 0 0
1 ''0

1 1 0 10

1
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1

m mm m

m m

u B B udu u
u

d u B B

i

i 

 


   

,                                                                         (23)

2 23 3 2 1
1 1 2 1 1 12
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1 m

m m

m m

M N Nd
M u M f u

d D u

u
N

u


 

   


    
        

   
; 

0  ,    1 1mu  , i  .                                                                                                                    (24) 

Here are: 

        * * * * * * * * * * *0
2 20 12 21 0 21 22 0 22 11 11 12 1 0 12 2 12 11 1 0 12 2
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i
i i u i u u i u                       

   

 * * *
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 
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 
, 

        2 0 21 2 12 0 21 1 22 0 22 1 22 0 22 2 21 0 21

1
N

Z
i i i i i                     . 

3.3. The Solution Procedure 

The boundary problem (23), (24) was solved numerically with a control of the value h and automatic 

transforming of the approximation B1.The functions um1(ζ), Bm1 (ζ), δ(ζ)=0, and h(ζ)are computer for a 

range of parameters i0, 21 . The control parameters are kept in the computer program as follows: 

Bm1<1,um1<1, dBm1/dζ<0, dδ/dζ>0. An analysis of the numerical simulations has shown that by the 

boundary conditions (24) the solution is correct only for the restricted regions by a ratio of turbulent 

mixing coefficients 21  (specific for each value of the parameter 𝑖0). It’s an interesting feature that a 

ration of the turbulent mixing coefficients of the phase cannot be arbitrary, which seems to be 

physically reasonable. For the average value of the 21

av
  and the variation range 21 the following 

approximations were obtained: 

21 00.2 /
av

i  ,   21 00.02i   . 

The ratio of the coefficients of turbulent mixing is hyperbolically falling down with an increase of a 

density ratio: the higher is the density of an ejected liquid, the lower is its mixing coefficient 
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comparing to a first liquid. But possible interval of a ratio can grow with the increase of the density 

ratio. It is understandable as heavy liquid loses its ability for intensive mixing with the other liquid.  

An interesting feature was revealed about the influence of parameters i0, 21  on the solution of the 

problem. The radius of a jet and velocities of phases on an axis practically don’t depend on 21 being 

totally determined by the value i0, while the functions Bm1 and h strictly depend on 21 . Thus, the 

turbulent mixing influences mostly the internal structure of a flow, phases’ distribution, and velocities 

depend on density ratio of the phases (internal structure has little influence on it). The velocity 

distribution, in a turn, determines the radius of a mixing zone because it changes with falling of the 

velocity according to the mass and momentum conservation equations. 

Due to the absence of the proven methodology for calculation of the transient part of a jet, the ground 

part of a turbulent two-phase jet is proposed for investigation in the following way, independent of 

limitations by 21 . As far as two functions, Bm1 and h, determine the function B1, and an influence of 

Bm1 is stronger than h, we can assume h=hi=const for the ground part of a jet so that the function Bm1 

be correcting a possible inaccuracy of it. This assumption over determines the task, therefore we can 

have the possibility for calculation of the same characteristic twice, independently. We choose a 

radius of the mixing zoneδ. Controlling a ration of δ1and δ2obtained from the solution of two 

independent equations we can decide upon attainability of this our assumption, as well as total 

inaccuracy of the model. Then equations (22) yield: 

     
1 0

1 20

11 12 21 0 21 22 0 22 1

m
m

t t m

u
B

h h u

i

i i


     


     

,   
 1 1 11 12

1

2 m m tB u h


 
 .      (25) 

Then the equation array (23), (25) with the boundary conditions (24) was solved as follows. From the 

equations (25) and the first equation of the system (23), the functions um1, Bm1 and δ=δ1 are obtained 

depending on the longitudinal coordinate ζ and parameters i0, 21 . The other radius of the turbulent 

zone δ=δ2 is obtained from the second equation of the system (24) by η=η*=0.5.  

3.4. The Results of Computer Simulations 

The results of computations for velocity, function-indicator of a phase and the radius of the turbulent 

mixing zone are given in the Fig. 3.The values hi(i0), δi(i0) are presented in Fig. 4. 

 
Fig3. Axial velocity, function-indicator and radius of the jet along the axis of a jet 
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In the next calculations, the value δ=δ1 is accepted as a radius of a jet. Some of the computer 

simulations and the FORTRAN programs by the methodology described here first done by us were 

presented in [7-11]. Then it was further developed by Prof. Nakorchevki with his co-workers, as well 

as by other researchers in a number of papers, e.g. [12, 13]. 

The equation (19) represented in a form 

dh/dζ=F,                                                                                                                                               (26) 

After substitution of the computed functions y0(h)δ(h), was solved in the following way. Function 

FM=1/F was computed in the range of parameters: i0Î[0.2, 16], 21 Î[0, 5], hÎ[-20, 0]. Its 

approximation was found as FM=A1
’+A2

’h+A3
’h2, where Ai

’(i0, 21 )- computed function with accuracy 

no less than 0.2%. The maximal total inaccuracy of computation after integration of (26) estimated by 

the Caushy-Bunyakovski inequality satisfied the condition Dmax<Dmax(Dh)max. As far as the Fig. 2 

shows (Dh)max<4, it was Dmax<0.8%. It is within the attainable range of inaccuracy for the integral 

methods of the turbulent jets and boundary layers. 

 

Fig4. Radius of a jet δi and function hi depending on parameter i0(density ratio) 

Integration of the equation (26) with account of the above-mentioned results 

ζ =A0+A1h +A2h2+A3h3,                                                                                                                       (27) 

where A0= -A1h0 -A2h0
2-A3h0

3, Ai=Ai
’/i, i=1,2,3. Thus, ζi =A0+A1hi+A2h2

i+A3h3
i. Computation by this 

formula is presented in Fig. 5: 

 

Fig5. The length of the initial part of a jet depending on the turbulent mixing ratio 21  

where from follows that the length of the initial part of a jet strictly depends on a ratio of the turbulent 

mixing coefficients 21 : the higher is turbulent mixing in a second phase (ejected from the 

surrounding medium), the longer is an initial part of a jet. Strong mixing in a first phase coming from 

the nozzle means physically that it keeps parameters of the first phase for a long time. With a strong 

mixing coefficient of an injected phase, an initial part of a jet is short independent of density ration of 

the phases in a wide range from i0=0.3 tilli0=8. If the mixing coefficients in phases are of the same 
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order or coefficient in an ejected liquid is less than in a liquid going from the nozzle, the initial part of 

the jet is long (up to 5-10 times bigger than a radius of a nozzle). And the denser is first liquid, the 

long is an initial part of a jet. 

The functions Ai(i0, 21 ), ζi (i0, 21 ), i=1,2,3, for 3 different values of i0 are presented in Figs 6, 7: 

  

Fig6. The functions Ai(i0, 21 ): dependence on 21

for 3 values of parameteri0 

Fig7. Radius of potential core and mixing zone of two-

phase jet 

The correlation (27) allows computing functions y0 (h),δ(h), and radius of a jet r=y0(h)+δ(h), shown in 

Fig. 7 (1- 21 =0.2, 2- 21 =1, 3- 21 =5.0). The other characteristics of the turbulent jet are presented 

in Figs 8, 9: 

  

Fig8. The function-indicator B1 and other parameters compared to experimental data  

Comparison of the computer simulations done is shown in Fig. 8, where from can be observed that for 

the oil-water liquids the correlation of the experiments and calculations is good for both measured 

parameters – flow velocity and function-indicator of the phase. The stream lines for the turbulent flow 

presented in Fig. 9 show that a trajectory of a first phase is going nearly parallel to the axis in all 

mixing layer independent of the density ratio of mixed liquids. In contrast to this, the trajectories of an 
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ejected liquid show that intensive mixing of liquids is going by big density ratio: heavy ejected liquid 

is penetrating the mixing layer in is mixing intensively with a first liquid. 

 
Fig9. The stream lines in a two-phase jet  

4. THE CONCLUSION 

The described mathematical model of the turbulent heterogeneous two-phase jet of two-immiscible 

liquid was analyzed and supported by numerical simulations and comparison with experimental data. 

In petroleum business, it may be useful for precise description of the mixing including phase 

distribution, which is the new valuable opportunity for technical estimations. 
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