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Abstract: In our paper we implement a lexical formal system linked to a neural network in order to build 

increasingly precise tokens starting with a randomly generated set of lexemes. After a literature review 

regarding neural networks, in our paper we described the formal system that is analphabet made of symbols 

and a set of rules concerning adding/removing lexemes, we described the neural network design, and the 

learning algorithm of solving the lexical puzzle. 
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1. LITERATURE REVIEW 

Neural networks are widely used in classifications, because they examine a lot of information and sort 

it all out very efficient. They are applied in solving diverse problems on medical, linguistic, 

economic-financial, technical fields, and so on. The risk management can be better mitigated and the 

investments in innovation could turn more valuable using neural network. Neural networks might be 

used in character recognition – eg. recognition of handwritten characters, image compression, stock 

market prediction, security, and loan applications to decide whether or not to grant a loan.  

Neural networks were successfully applied in diagnosis classification or for investigation of neural 

distinctions between inflectional and derivational morphology and their interaction with lexical 

frequency using the mismatch negativity [Leminen, 2013]. 

In linguistic analysis neural networks are applied in distinguishing between micro-grammar and 

macrogrammar, two cognitive serialization principles that allow speakers to build up a unit of talk in 

real-time. “Macrogrammatical elements serve different cognitive tasks that arise at particular points 

in the linear production of an utterance, such as fine-tuning epistemic value or modifying illocutionary 

force”. [Haselow, 2016] 

In the economic field [Vinodhini, 2016] shows that combining a PNN (Probabilistic Neural Network) 

and PCA (Principal Component Analysis) is reducing the training time. This result might be explained 

by the mixing the computational capability and flexibility, by retaining its simplicity.  

The structure, the transfer function, and learning algorithm might influence the performance of a 

neural network. The best chosen structure is essential for a higher performance in classification using 

neural networks and it depends on the complexity of the relationship between the input and the output. 

[Siswantoro, 2016] 

In this paper we model a neural network that will combine lexems into tokens according to a fixed set 

of rules in order to simulate the human child ability to learn a natural language.  

2. CASE STUDY 

2.1. The Formal System 

The formal system is made of an alphabet made of symbols and a set of rules concerning 

adding/removing lexemes in order to reach a desired output, starting from a known input [Hofstadter, 

2015]. For simplicity sake, our alphabet will contain only three symbols:  
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A={..;--;..-}; 

The input string of symbols will be --.. and the output is expected to be --..- following the rules: 

1. When the last symbol is .., we can add ..-; 

2. – followed by any symbol can be transformed in – followed by two symbols of that kind; 

3. A sequence of three .. symbols can be replaced by the ..- symbol; 

4. A double ..- symbol can be removed by the original string. 

We are not sure if our problem has any solutions at all but we shall find if so by implementing a 

machine learning algorithm in order to gradually refine our search for composing the final string. 

For this purpose we should employ a neural network made of two perceptrons - one for storing the 

input string and one for the desired output sequence - and a variable number of hidden layers made up 

by four sigmoidal neurons to match our set of rules. 

The output of a sigmoid neuron with inputs x1, x2,…x1, x2,…, weights w1, w2,…w1, w2,…, and 

bias b is, after [Nielsen,2015]  

 

The sigmoid function plot is the following (Fig.1.): 

 

Fig1. Sigmoid Function 

2.2. Neural Network Design, after [Miller, 2013]  

The neural network will contain a topology (ex. 3, 2, 1) of layers and neurons (Fig.2) 

 

Fig2. The neural network layers 

This means a network consists of an array of layers (ex. 3), which in they turn consists of arrays of 

neurons (3, 2, 1). In this, way the topology could be represented as a bi-dimensional array: 

vector<vector<Neurons>> where the second layer is a hidden one. 
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The Network class will have two public methods, one for feed forward information, the other for back 

propagation the weights adjustments and one constructor that will take the network topology as a 

parameter: 

Network 

layers[] 

feedForward() 

backPropagation() 

Network() 

The Layer class will have an array of neurons property and a constructor that take the number of 

neurons the layer will contain: 

Layer 

Neurons[] 

Layer() 

The Neuron class will contain a reference property to the layer it resides in, output weights property 

and back propagation weight values based on gradient descent delta learning rule: 

Neuron 

layer 

outWeights 

backWeights 

Neuron() 

Delta rule is based on Least Means Square (LMS) algorithm that adjusts weights when the output 

vector is compared with the correct answer and the difference is not 0 so as to decrease the cost 

[Russell]. We shall construct a cost function E that measures how well the network has learned [Orr, 

2011]: 

 

Where: 

n – number of examples; 

ti – desired target value associated with the i
th
 example; 

yi – output of the network when the i
th
 input pattern is presented to network. 

The change in weight is given by: 

 

where: 

r – learning rate; 

 – derivative for cost function in wi point. 

From relations 1 and 2 results that: 
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For linear output units, delta is the difference between the desired and computed output values of the 

n
th
 neuron.  We shall initialize the weights with random values, then update them with small values 

until E is within desired tolerance. 

2.3. Learning how to Solve the Lexical Puzzle 

We figure out to parse the four rules in two hidden layers each made up by four neurons, in order to 

reach all the possible permutations of the rules: 

 

Fig3. Permutations of the four rules in two hidden layers each made up by four neurons 

For each passing neuron will trigger a method (ex. applyRule) that will add/extract lexemes to/from 

the original string of symbols. The rule applied will be current neuron order number so there is no 

need to store such information in the neuron itself: 

Neuron 

layer 

outWeights 

backWeights 

applyRule() 

Neuron() 

3. RESULTS AND DISCUSSION 

In this paper we tried to apply a machine learning algorithm to a formal system in order to test the 

machine capability of learning the simple rules of an artificial language. In a future paper, we shall 

test a stochastic algorithm for the same formal system and compare the results of these two 

approaches. Only then will be able to choose and implement an appropriate algorithm destined for 

natural language processing. 
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