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1. INTRODUCTION 

Figure 1 shows the number of coal mines in China over the past 20 years from 1998 to 2018. The 

number of coal mines decreased from 80,000 in 1998 to 5,800 in 2018, a reduction of approximately 

92%. Closure of the mines resulted from exhaustion of coal resources in old mining districts and 

integrated resources management by strategically abandoning smaller coal mines. The trend of coal 

mine closure is anticipated to continue in China in the near future.  

Such massive mine closure is not limited to China but has also been experienced in many other 

countries including the Unites States, United Kingdom, and South Africa (Aljoe 1994; Younger 2000; 

Younger et al. 2006; Wolkersdorfer 2006; Li et al. 2014). Where mining of coal extends below the 

groundwater table or under potentiometric pressure, sustained dewatering is necessary throughout the 

life of the mine to prevent flooding of active parts of the workings (Younger & Thorn 2006). As a 

consequence, the natural hydro geological conditions are disrupted, and the local and regional hydro 

geological regime is controlled to a large extent by the dewatering. In many coal mines or coalfields 

with multiple mines, the scale of hydro geological disruption can be many hundreds or thousands of 

square kilometers. Coal mine closure usually comes with discontinuation of mine dewatering, which 

results in an increase in the groundwater level. The groundwater level rise floods the underground 

voids generated due to mining activities or flowing back into the formations surrounding the mine. 

This flooding process is often referred to as groundwater rebound. Predicting the groundwater 

rebound in response to mine closure is important because the rebound leads to the following hydro 

geological consequences pertinent to environmental impacts, resource conservation, and hazard risk 

management.  

Abstract: Groundwater rebound occurs after closure of coal mines that are below groundwater levels and 

cessation of dewatering. While a number of modeling approaches have been developed in recent years to 

predict such rebounds and facilitate post-closure proactive management, the lack of detailed input data and 

complex mine void structures make these modeling approaches less effective. Traditional Darcian-flow based 

groundwater flow models do not provide the correct simulation of multi-porosity flow with preferential flow 

along mine voids including mined-out areas, roadways, and shafts. Models that account for the non-Darcian 

flow in mine voids include black-box model, pipe-network model, and pipe-pond models. Depending on 

volume of mine voids and their connections, these models can predict the general trends in groundwater 

rebound and water quality. They can help determine the general timeframes to approach the full recovery. In 

particular, the black-box approach, which does not require detailed geometric and hydraulic data of mine 

voids, takes advantage of the routine mining records on mining extent and dewatering activity. Examples are 

presented to show that the predictions can provide useful information for more sophisticated modeling of 

groundwater flow dynamics after mine closure. The hydrogeological insights into the mine void system that 

are gained from such exercises are also helpful in future re-use of flooded voids as underground reservoirs 

or resources for low-carbon heating systems. 
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 The most direct consequence of groundwater rebound is water pooling, which is controlled by the 

extent of cone of depression caused by dewatering, void volume of old workings, hydraulic 

connectivity between old workings, extent of induced fractures in the overlying formation, inflow 

rate, and outflow rates. Based on site-specific hydrogeologic conditions and mining history, water 

pooling can be unconfined or confined, in one location or multiple locations, or have one 

groundwater level or multiple groundwater levels. Water pooling can encompass hundreds of 

kilometers (U. S. Office of Surface Mining 2014) and may pose a safety threat to neighboring 

active mines if they are inadvertently intercepted. The water inrush incident that occurred at 

Quecreek Coal Mine, Pennsylvania (PA) in 2002 was caused by breakout of a neighboring water 

pool (PA Department of Environmental Protection, 2003). Nine miners were trapped for four days 

and ultimately rescued. The outcome, however, of the water inrush that occurred in China in 2005 

and also resulted from water pooling in an abandoned mined out void was much worse. The 

incident caused 121 fatalities and economic loss of more than 47 million Yuan (Cui et al. 2018).  

 Change in groundwater quality is another important consequence of groundwater rebound. 

Flooding results in rapid dissolution of the deposited salts by oxidation of pyrite and other 

minerals (Wood et al. 1999; Stoertz et al. 2001; Zhou et al. 2006; Hu et al. 2010; Liu et al. 2011). 

Based on a recent survey in the closed mines of China (Wu et al. 2017), there are four types of 

mine water, i.e., acid mine water, high salinity mine water, high sulfate mine water, and high 

fluorine mine water. Water pools containing contaminants in closed mines can be underground 

pollution sources to natural water resources and the environment. Post-closure water quality may 

experience the “first-flush” phenomenon in many mines (Gzyl & Banks 2007). Water quality 

deteriorated immediately after the closure but improved over a long period of time due to dilution 

by fresh recharge and depletion of pyrite. Water quality stratification has been observed in some 

mine pools where only the upper portion is being actively flushed, and the lower part contains 

stagnant poor quality mine water (Wolkersdorfer 2006; Ladwig et al. 1984).  

 The third consequence of groundwater rebound is related to ground subsidence and collapse (Pan 

et al. 2018). Sudden flooding of shallow workings can cause weakening of mine supports, which 

may lead to subsidence. Three mechanisms contribute to the ground subsidence: (1) slaking and 

pillar failure in old workings in response to wetting; (2) direct erosion of mine voids by rapidly 

flowing mine water or pressurized gases; and (3) reactivation of previously dormant faults that 

were intercepted by old mine workings subject to recent flooding. The ground subsidence leads to 

either small-scale collapses or large-scale enclosed basins, which enhance the recharge conditions.  

 In some coal mines, changes in hydrogeology affect occurrence and migration of mine gases 

(Jardine et al. 2009). Mine gases can cause concerns of explosion and vapor intrusion. Predictions 

of post-closure responses are important from a public safety perspective. 

 Groundwater rebound also provides opportunities for beneficial use of mine-induced voids. 

Flooded mine workings may be used as underground water reservoirs where water quality permits 

(Dinger et al. 2006; Hobba 1987; Ordoñez et al. 2012). Mine water is an ideal source upon which 

to base heat pump solutions for space-heating and cooling of housing complexes, large 

commercial developments or public buildings (Younger 2014; Zeng et al. 2017). 

A number of modeling approaches have been developed in recent decades to predict groundwater 

rebound in response to mine closure (Kortas and Younger 2007; Zhou et al. 2011; Light and Donovan 

2015, Adams and Younger 2001; Boyaud and Therrien 2004; Winters and Capo 2004; McCoy et al. 

2006; Feng 2006; Hamm et al. 2008). Mine groundwater rebound prediction technology provides 

quantitative information to address the above-mentioned consequences associated with abandoned 

mines. The traditional Darcian-flow based models such as MODFLOW (United States Geological 

Survey) have been reported for rebounding simulations (Toran and Bradbury 1988; Sherwood & 

Younger 1997; Huisamen & Wolkersdorfer 2016). The rationale for MODFLOW application to 

predicting groundwater rebound is that the model domains behave as equivalent porous media at the 

scale of study.  

2. CONCEPTUAL SITE MODEL OF GROUNDWATER REBOUND AFTER MINE CLOSURE 

Groundwater environment in mines, however, is physically and hydraulically different from a 

“typical” aquifer. Analysis of the mine groundwater rebound phenomenon using a Darcian flow-based 
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groundwater flow model presents many challenges (Adams & Younger 2001; Pan et al. 2017; Wu et 

al. 2017). Major dominant flow-path features can be so extensive that they cannot be conveniently 

ignored even at large scales. Groundwater rebounds actually occur in multi-porosity media with void 

sizes varying over several orders of magnitude. Although the flow of groundwater in the strata 

surrounding a mine void can be assumed to be a laminar groundwater flow, flow in the mined voids 

including shafts, drifts and underground roadways is turbulent. In most cases, mine workings 

represent preferential flow pathways with variable and difficult-to-estimate hydraulic properties. The 

only geologic medium that may be analogous to abandoned mines is the karst system that consists of 

caves and conduits.  

To overcome the limitations of the Darcian flow-based models, three types of model are developed 

that explicitly account for non-Darcian flow in the mined out voids: black-box model, pipe-network 

model, and pond-and-pipe model. Selection of the most appropriate model and the accuracy of the 

model prediction depend on development of a representative conceptual site model (CSM). Technical 

requirements on development of CSMs for abandoned mines can be found in the U. S. Environmental 

Protection Agency (USEPA) document “Best Practices for Preventing Sudden, Uncontrolled Fluid 

Mining Waste Releases” (USEPA, 2017). Inclusion of mining related structures makes it essential that 

any CSM is site-specific. Table 1 summarizes the major elements of a CSM for groundwater rebound. 

Availability of required elements will dictate the type of modeling and accuracy of results.  

This paper focuses on applying non-Darcian flow equations to predict groundwater rebound in 

response to mine closure. The CSM should include recharge sources, mine workings, and pathways 

from recharge to mine working. The recharge data is often readily available for mines that have 

operated for years. The more critical element is the three-dimensional extent and sizes of mine 

workings. Any historical exploration reports, mine development plans, operation of mine workings 

should be reviewed for an initial assessment. Reports on blockages, collapse, instability, 

interconnections with other mines, and monitoring data on surface water, groundwater, and ground 

subsidence should be factored into the CSM. The SCM can also be improved with data collected 

through application of specialized techniques including geophysics, tracer test, laser or sonar 

scanning, and downhole videoing (USEPA, 2017; Love et al. 2005; Wolkersdorfer & Hasche 2003). 

Because each mine site is unique in the hydro geological conditions and mine operations, a CSM is 

site-specific.  The modeling exercises presented in this paper are not for a specific mine site. Instead 

they demonstrate three modeling tools that can be used to predict the groundwater rebound process. 

These models can be adapted to any mine site, provided that a CSM can be developed for it. 

Table1. Major elements of CSM for abandoned mines 
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2.1. Black-Box Model 

A black-box model is applicable to assessing post-closure hydrogeology of a coal mine where time, 

financial resources, and available data are limited. The best example of such a model is the water 

balance or water budget analysis. Therefore, this approach is suitable to a watershed or drainage-basin 

scale. The method does not require knowledge of mined void structures and detailed spatial hydro 

geological data at the mine. It relies on mining records on coal production and dewatering activities. 

The records of coal production help calculate volume of the mined voids. Conversion of coal 

production records to void space is relatively straightforward as long as the coal density and coal 

porosity are known. Such rudimentary calculations do not take into account the mine-induced 

voids/fractures, deformation of overlying strata, and any back-filling activities. Records of the pump 

rate/volume during dewatering provide valuable information on hydro geological conditions at the 

mine and surrounding areas. To account for these factors, the total mined void volume is adjusted by 

storage coefficient S (dimensionless), which is the effective ratio between the mined void volume 

available for flooding and the total calculated mined void.  

Assume a regular-shaped mined void with surface area A (m
2
) and height H (m). For the addition of a 

given volume Vw (m
3
) of water, the water level rise Δℎ w can be expressed by: 

∆ℎ𝑤 =
𝑉𝑤

𝐴 𝑆
                                                                                                                           (1) 

If the mine void can be assumed as an open reservoir, S equals to 1. In many abandoned mines, the 

mine voids consist of un-mined materials. The value of S ranges from 0.01 to 0.5 with an average of 

0.3 for closed mines in the United Kingdom (Younger 2016). Based on authors‟ experience in China, 

the value of S depends on type of rock in the overlying formations and mining method associated with 

coal recovery rate. The S value ranges from 0.4 to 0.8 in formations characterized with brittle 

deformation, 0.2 to 0.5 in formations characterized with ductile deformation, and 0.3 to 0.6 in 

formations consisting of both brittle and ductile deformations. A smaller S means a quicker rebound 

process. 

Parameter Vw is a function of rate of water inflow to the mined system and the selected time interval. 

Under the circumstances where no data is available to support sophisticated calculation of the water 

inflow rate, the records of pumped discharges can be used to estimate the potential inflow rate. As 

required by regulatory agencies, most coal mines have historical records of dewatering. The records 

help establish the relationship between pumping rate and mining level, or relationship between 

pumping rate and groundwater level drawdown or elevation. The relationship between measured 

pumping rate and groundwater level elevation gives the pumping rate at a specific groundwater 

elevation. The pumping rate can be reasonably assumed to be the inflow rate because the mine would 

be flooded at that specific elevation if the pumping rate were not equal to or greater than the inflow 

rate. Such a beneficial use of the pumping rate records does not consider the difference in 

meteorological conditions and changes in hydro geological conditions due to mining. However, such 

established relationships between inflow rate and groundwater head conform to the basic principle in 

hydrogeology, i.e., water flow rate is head-dependent. 

Table 2 presents hypothetical records on mining activities to illustrate how the black-box can be used 

to calculate the rebound processes. The abandoned mine has extracted coals at four levels for different 

coal seams. Figure 1 shows the rebound process over time and the pumping rates at different mining 

levels.  The rebound is analogous to an inverse process of dewatering for the flow rate. When the 

rebound reaches different elevations the inflow rate is adjusted to the pumping rates at those 

elevations. Figure 2 shows a stepped profile of water level recovery. The stepped groundwater level 

recovery is a common characteristic of groundwater rebounds in abandoned coal mines. For a total 

void volume of 1.2 M m
3
, it will take more than 16 years to complete the rebound. 
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Figure1. Number of active coal mines in China  

Table2. Records on mining activities for a hypothetical mine 

Mining Records 

Mining Level Elevation (m) Volume of 

mine void 

(M m
3
) 

Surface area 

of mine void 

(m
2
) 

Height of 

mine 

void (m) 

Average pumping 

rate during 

dewatering (L/s) 

Mining Level I 100 0.3  30,000 10  1.3 

Mining Level II 50 0.3 20,000 15  6.30 

Mining Level III 30 0.3 60,000 5  19.0 

Mining Level IV 0 0.3 30,000 10  31.55 

 

Figure2. Groundwater rebound prediction for a hypothetical mine closure using black-box model 

2.2. Pipe-network model 

A pipe network model is a physically based model that is constructed with knowledge of the void 

structures. A pipe network is adopted to allow the larger flow pathways to be discretized by a series of 

interconnected conduits (pipes). The network can be coupled with an equivalent porous-medium 

model to represent the interconnections between the regional aquifer and these conduits in the mined 

out strata. Examples of such models are MODFLOW-CFP (Conduit Flow Process) (Shoemaker et al. 

2008) and 3D VSS-NET (Adams & Younger 1997). The CFP was developed for simulating both 

laminar and turbulent groundwater flow in karst conduits or caves and is coupled with the popular 

MODFLOW program. The hydraulic model NET was developed specifically for simulating turbulent 

groundwater flow in mined out voids of abandoned mines and is coupled with VSS, which is a 

modeling program for variably-saturated porous medium domains (Adams 2014). The mathematical 

algorithm to solve the pipe network, to calculate pressure head and flow rates, varies slightly for 
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different programs. However, the basic principles remain similar, using one of the following: Darcy-

Weisbach flow formula, Chezy-Manning formula, and exponential Hazen-Williams formula (Adams 

& Younger 1997; Shoemaker et al.; 2008; Hamm et al. 2008). Each formula uses the following 

equation to calculate the head loss through a pipe between two nodes (Rossman 2000).  

∆𝐿= 𝐴 𝑞𝐵                                                                                                                           (2) 

where hL is the head loss; q is the flow rate; A is referred to as the resistance coefficient; and B is the 

flow exponent. Table 3 lists expressions for the resistance coefficient and values for the flow 

exponent for each of the formulas. Theoretically, the Darcy-Weisbach formula is the most correct and 

applies over all flow regimes and to all liquids. The Hazen-Williams formula is the most commonly 

used and can be used for turbulent flow in water only. The Chezy-Manning formula is more 

commonly used for open channel flow. 

Table3. Parameter expressions in Equation (2) (Rossman 2000) 

Equation name Resistance coefficient, A Flow exponent, B 

Hazen-Williams 4.727 C
-1.852

 d
-4.871

 L 1.852 

Darcy-Weisbach 0.0252 f(e, d, q) d
-5 

L 2 

Chezy-Manning 4.66 n
2
 d

-5.33
 L 2 

C = Hazen-Williams roughness coefficient 

e = Darcy-Weisbach roughness coefficient (ft) 

f = friction factor (dependent on e, d, and q) 

n = Manning roughness coefficient 

d = pipe diameter (ft) 

L = pipe length (ft) 

q = flow rate (cfs) 

Application of the pipe network model is illustrated for an abandoned mine, as shown schematically 

in Figure 3. The network is relatively simple and consists of six nodes and five pipes. The parameters 

of the nodes and pipes are presented in Table 4. Figure 4 shows the predicted groundwater level 

rebound, together with the predicted inflow rate to the mine void. 

 

Figure3. Example pipe network for groundwater rebound simulation 

 

Figure4. Groundwater rebound prediction for pipe network in Figure 3 using pipe-network model 
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Table4. Parameters for the pipe network shown in Figure 3 

Node Pipe Mine Void 

Node 

Number 
Feature 

Elevation 

(m) 

Pipe 

Number 

Diamet

er 

(m) 

Lengt

h 

(m) 

Volum

e 

(M 

m
3
) 

Surface Area 

(m
2
) 

Total 

heig

ht 

(m) 

1 

Junction 

for 

pipes 

0 1 3.6 305 18 300,000  60 

2 

Reservo

ir as 

recharge 

source 

60, also the 

maximum 

recovery 

level 

2 3 305 

  

  

  

   

3 

Junction 

for 

pipes 

10 3 2.4 305 

4 

Junction 

for 

pipes 

15 4 1.8 305 

5 

Junction 

for 

pipes 

30 5 3.6 305 

6 

Open 

tank as 

the 

mine 

void 

0 
  

  

The challenges of using the pipe-network model lies in the design of the network that represents the 

mine voids and groundwater pathways. This is the shortcoming for more sophisticated models that use 

network modeling for non-Darcian flows (Zhou et al. 2011). Due to the extensive data requirements 

on underground maps and groundwater level measurements, the pipe-network model is not applicable 

to larger areas because the required input parameters are often unavailable. 

2.3. Pipe-Pond Model  

Pipe-pond models are semi-distributed models in which flow within large volumes of mine voids are 

represented as „ponds‟ (each characterized by a single water level across the entire pond) and the 

inter-pond connections are represented by pipe flow equations (Sherwood and Younger 1997; Banks 

2001). This type of model is essentially a combination of the pipe-network model and the black-box 

model. The flow paths are described by the pipe-network, while the mine voids of large volumes are 

described by black-boxes. In applications of the pond-pipe model, the data requirement is not as 

extensive as the pipe-network and the results can be more meaningful than the black-box model. 

Examples of such models are GRAM model (Groundwater Rebound in Abandoned Mine workings) 

(Burke & Younger 2000; Kim & Choi 2018), mixing-cell model (Zhou 2000), and EPANET model 

(Rossman 2000). Several studies using the GRAM model have been carried out to analyze the mine 

groundwater rebound phenomenon associated with a coal field in South Yorkshire, UK (Gandy & 

Younger 2007; Kortas & Younger 2007). The GRAM model considers water in each pond to be 

completely mixed and the ponds to be interconnected with horizontal pipes.  

The EPANET model was actually developed for the simulation of water distribution in piping 

systems. However, it has all the components of a pipe-pond model. This model has several advantages 

over the GRAM model including the following: accommodating all pipe flow equations as discussed 

in the pipe-network model; mixing mechanisms in ponds including complete mix, plug flow, or two-

compartment mixing; predicting tracer movement and water age; and being available in the public domain.  

An example of the application of the pipe-pond model is shown in Figure 5. The model consists of 12 

nodes and 14 pipes. Of the 12 nodes, four represent recharge sources and four represent 

interconnected mine voids. The parameters of the nodes and pipes are presented in Table 5. Figure 6 

shows the predicted groundwater level rebound, together with the predicted inflow rate to each of the 
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mine voids. Clearly, the inflow rate to each of the mine voids decreases with the groundwater 

rebound. At the end of simulation, the total inflow rate is less than 5 L/s, or 0.4 L/s to 30 m mine void, 

0.13 L/s to 15 m mine void, 0.68 L/s to 10 m mine void, and 3.5 L/s to the 0 m mine void. The 

groundwater rebound appears to reach asymptotic condition after 2.5 years. 

 

  Figure5. Example pipe-pond model for groundwater rebound simulation 

 

Figure6. Groundwater rebound prediction for pipe-pond mode in Figure 5 using pipe-pond model 

Table5. Parameters for the pipe network shown in Figure 5 

Node Pipe Mine void 

Node 

Number 
Feature 

Elevation 

(m) 

Pipe 

Number 

Diameter 

(m) 

Length 

(m) 

Level 

(m) 

Volume 

(M m
3
) 

Surface 

Area 

(m
2
) 

Height 

(m) 

1 
Junction 

for pipes 
0 1 3.7 305 0 60  300,000  200 

2 

Reservoir 

as 

recharge 

source 

60, 

maximum 

recovery 

level 

2 3.0 305 10 15  73,000  200 

3 

Reservoir 

as 

recharge 

source 

60, 

maximum 

recovery 

level 

3 3.7  305 15 4  20,000 200 

4 
Junction 

for pipes 
10 4 3.0 305 30 15  73,000  200 

5 

Open tank 

as mine 

void 

10 5 2.4 305 

 

6 

Reservoir 

as 

recharge 

60, 

maximum 

recovery 

6 3.0 305 
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source level 

7 

Open tank 

as mine 

void 

0 7 1.2 305 

8 

Open tank 

as mine 

void 

15 8 1.8 305 

9 
Junction 

for pipes 
15 9 3.7 305 

10 
Junction 

for pipes 
30 10 3.7 305 

11 

Open tank 

as mine 

void 

30 11 3.7 305 

12 

Reservoir 

as 

recharge 

source 

60, 

maximum 

recovery 

level 

12 3.7 305 

 
13 3.7 305 

14 3.7 305 

2.4. Predicting Water Quality in Mine Voids 

Prediction of post-closure water quality is very challenging (Younger 1997; 2000).  The fate and 

transport of chemical constituents are certainly not amenable to precise, quantitative simulation. Any 

estimate must be presented in a manner that acknowledges the irreducible uncertainties. In broad 

terms, the chemical content of the mine water flowing into mine voids will reflect the chemical 

contents of the widely-worked coal seams and surrounding formations. Dissolution and oxidation may 

increase the chemical concentrations temporarily, similar to the first-flush phenomenon in water 

quality of storm water runoff.  Accurate prediction of a wide range of parameters in response to mine 

closure is beyond present capabilities. However, the pipe-pond model can be a simplified prediction 

protocol for water quality trend evaluation. 

The pipe-pond model shown in Figure 5 was used to demonstrate the screening level prediction of 

water quality change in mine voids during the rebound process. If recharge source #2 is also a 

contamination source of a conservative chemical with a concentration 100 mg/L, Figure 7 shows the 

concentration variations in the four mine voids under the assumption of complete mixing. The mine 

void at 0 m level is impacted the most, whereas the mine void at 30 m level is impacted the least. The 

concentration in the 0 m mine void decreases gradually after reaching the peak at approximately 73 

mg/L. The concentration reaches the asymptotic level of 56 mg/L after 2.5 years. This is because 

approximately 56% of water flowing to the 0 m mine void comes from source recharge #2. As 

expected, the chemical concentrations in the mine voids depend on the distance from the 

contamination source, the larger the distance, the lower the chemical concentration.     

 

Figure7. Predicted chemical concentrations in mine voids for pipe-pond mode in Figure 5 using pipe-pond 
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3. CONCLUSION 

Mathematical modeling of groundwater rebound in response to mine closure can be complicated. 

Mine workings consisting of mined out areas, shafts, and roadways represent preferential flow 

pathways with variable and difficult-to-estimate geometric and hydraulic properties. Groundwater 

flow in these large open mine voids is typically turbulent. Moreover, mining activities can induce 

additional fractures in surrounding formations, and back-filling practices can reduce the void volume. 

The closed mines are multi-porosity media. Traditional Darcian-flow based groundwater flow models 

do not provide the correct simulation of the multi-porosity media with preferential flow along mine 

voids for post-closure prediction. This paper introduces three types of models that account for non-

Darcian flow in mine voids: black-box model, pipe-network model, and pipe-pond models. 

Depending on volume of mine voids and their connections, these models can predict the general trend 

in groundwater rebound and water quality. They can help determine the general timeframes to 

approach the full recovery. In particular, the black-box approach, which does not require detailed 

geometric and hydraulic data in mine voids, takes advantage of the routine mining records on mining 

plan and dewatering activity. The results from these rudimentary analyses help determine if and where 

the monitoring and remediation efforts should be made in response to the mine closure.  
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