

Time in Heracletean Dynamics (Additional Article)

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: *The discussion about consistency of time in Heracletean dynamics has been supplemented.* **Keywords:** *Heracletean dynamics, elliptic and hyperbolic time*

1. INTRODUCTION

The subject of interest of this paper is to supplement the discussion about the inconsistency of time of matter in Heracletean dynamics as a consequence of the mass dependent wave time $t_{wave} = \frac{h}{mc^2} [1]$.

2. THE WAVE TIME ON THE NON-EUCLIDEAN SPHERE AND EUCLIDEAN PLANE

The geometric time can solve the inconsistency of time in Heracletean dynamics ensuring that the same time belongs to matter independently of its ground mass.[1] But at the finite sphere radius R[2]two possibilities are allowed for the vectorial time sum $\overline{t_{sphere}}$ of the real wave time $\overline{t_{wave}}$ and the imaginary wave time $\overline{t_{wave}}$ of the same nominal value written as:

$$\overline{t_{sphere}} = \overline{t_{wave}} + \overline{\iota t_{wave}}.$$
(1)

A) On the elliptic sphere holds:

$$\cos\frac{t_{elliptic}}{R} = \cos\frac{t_{wave}}{R}\cos\frac{it_{wave}}{R}.$$
(2)

Here the vectorial time sum $t_{elliptic}$ of both times (t_{wave} , i_{wave}) on the elliptic sphere is positive real. Since:

$$t_{wave}^2 + (it)_{wave}^2 = t_{euclidean}^2 = 0 < t_{elliptic}^2.$$
(3a)

And consequently:

$$t_{elliptic} = x \text{ where } x \in \mathbb{R}^+.$$
(3b)

The x-value depends on the sphere radius *R*.

B) On the hyperbolic sphere holds:

$$\cosh\frac{t_{hyperbolic}}{R} = \cosh\frac{t_{wave}}{R}\cosh\frac{it_{wave}}{R}.$$
(4)

Here the vectorial time sum $t_{hyperbolic}$ of both times (t_{wave} , it_{wave}) on the hyperbolic sphere is imaginary. Since:

$$t_{wave}^2 + (it)_{wave}^2 = t_{euclidean}^2 = 0 > t_{hyperbolic}^2.$$
(5a)

And consequently:

$$t_{hyperbolic} = ix \quad where \ x \in \mathbb{R}.$$
(5b)

The x-value depends on the sphere radius *R*.

At the infinite sphere radius *R* both non-Euclidean spheres transform into Euclidean plane so holds:

$$t_{wave}^2 + (it)_{wave}^2 = t_{euclidean}^2 = 0.$$
 (6)

And consequently $t_{eucledean} = 0$.

3. THE CONSISTENT TIME

It is plausible to propose that the existence of both non-Euclidean spheres is equally possible so the sphere wave time $\overline{t_{sphere}}$ could be a vectorial sum of the elliptic wave time $\overline{t_{elliptic}}$ and the hyperbolic wave time $\overline{t_{hyperbolic}}$ on the Euclidean plane as follows:

$$t_{sphere}^2 = t_{elliptic}^2 + t_{hyperbolic}^2.$$
⁽⁷⁾

Applying the equation (2) and taking into account $t_{wave} = \frac{h}{mc^2}$ the elliptic wave time $t_{elliptic}$ is given:

$$\cos\frac{t_{elliptic}}{R} = \cos\frac{\frac{n}{mc^2}}{R}\cos\frac{i\frac{n}{mc^2}}{R}.$$
(8)

And applying the equation (4) and taking into account $t_{wave} = \frac{h}{mc^2}$ the hyperbolic wave time $t_{hyperbolic}$ is given:

$$\cosh\frac{t_{hyperbolic}}{R} = \cosh\frac{\frac{h}{mc^2}}{R}\cosh\frac{i\frac{h}{mc^2}}{R}.$$
(9)

So the sphere wave time can be expressed with the help of the equations (7), (8) and (9) as follows:

$$t_{sphere}^{2} = \left(R \arccos(\cos\frac{\frac{h}{mc^{2}}}{R}\cos\frac{i\frac{h}{mc^{2}}}{R})\right)^{2} + \left(R \operatorname{arcosh}(\cosh\frac{\frac{h}{mc^{2}}}{R}\cosh\frac{i\frac{h}{mc^{2}}}{R})\right)^{2} = 0.$$
(10)

We can further assume the equivalence of particle time[1] and individual sphere wave time $t_{elliptic}^2 = t_{hyperbolic}^2 = t_{particle}^2 = \frac{h}{c^3}$. Such sphere wave time of matter being independent of mass is achieved on the account of the mass dependent time curvature where the time sphere radius *R* is in inverse proportion to the mass of matter *m*.

4. CONCLUSION

The time consistency of matter in Heracletean dynamics can be achieved by the mass dependent curvature of time.

Figure1. Time in Heracletean dynamics

DEDICATION

To Merry Christmas and Happy New Year 2021

REFERENCES

[1] JanezŠpringer, (2020 Time in Heracletean Dynamics. International Journal of Advanced Research in Physical Science (IJARPS) 7(12), pp.11-12, 2020.

[2] Špringer J. Fine Structure Constant as a Mirror of Sphere Geometry. Progress in Physics, 2013, v. 1, 12-14.

Citation: Janez Špringer, (2020) Time in Heracletean Dynamics (Additional Article). International Journal of Advanced Research in Physical Science (IJARPS) 7(12), pp.21-22, 2020.

Copyright: © 2020 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.