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1. THE HOLOGRAPHIC SCREEN AT THE OBJECT BOUNDARY 

In the last time an important progress was done on the Ryu-Takayanagi (RT) formula generalization, 

especially by obtaining arguments about the nature of the transfer of bulk energy (Energy flux, the 

rate of transfer of energy through a unit area (J·m
−2

·s
−1

)) to the CFT horizon.  

Thus, Bit threads provide an alternative description of holographic entanglement, replacing the Ryu-
Takayanagi minimal surface with bulk curves connecting pairs of boundary points [11].  
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Despite the fact that the RT formula has been a subject of intense research for over a decade, there are 
still many facets of it that are only now being discovered. 

Indeed, only recently was it demonstrated that the geometric extremization problem underlying the 
RT formula can alternatively be interpreted as a flow extremization problem [5, 6]. By utilizing the 

Riemannian version of the max flow-min cut theorem, it was shown that the maximum flux out of a 

boundary region A, optimized over all divergenceless bounded vector fields in the bulk, is precisely 
the area of m(A). 

In particular, for the minimal surface m(A), 
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The number of threads connecting A to A  is at least as large as the flux of v on A: 

 AAA
vN  

The reason that don't necessarily have equality is that some of the integral curves may go from A  to 

A, thereby contributing negatively to the flux but positively to 
AA

N . 

Given (1), however, for a max flow v(A) this bound must be saturated: 
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Abstract:  Many experimental works at small scale (photons, electrons, etc.) try to confirm the entanglement, 

in this work we will show that  the Einstein ring could be a such proof of entanglement but at very large scale 

(cosmic objects),  when, due of a QCD operation (Sc hwinger effect) inside  nucleons  is infused in quantum a 

flux of energy (pulse) that corresponds to stress-energy tensor onto attached nucleons either as of n-sheeted 
Riemann surfaces glued  to the boundaries (CFT), or as  by the magnetic flux lines (bit threads) of  fluxoids 

type there producing a strain of space –the lensing effect. This approach is tested on light lensing around 

objects (Earth).  
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The bit threads connecting A to A  are vivid manifestations of the entanglement between A and A , 
as quantified by the entropy S(A). 

Instead, in [2] they will invoke the notion of a flow, defined as a divergenceless vector field in the 

bulk with pointwise bounded norm; note that this is a global object, not localized anywhere in the 

bulk. Its flow lines can be thought of as a set of “threads” with a cross-sectional area of 4Planck areas. 
In the picture below, each thread leaving the region A carries one independent bit of information 

about the microstate of A; S(A) is thus the maximum possible number of threads emanating from A. 

The equivalence of this formulation to equation (1.1) arises from the fact that the minimal surface acts 
as a bottleneck limiting the number of threads emanating from A; this is formalized by the so-called 

max-flow min-cut (MFMC) principle, a theorem originally from network theory but which they use 

here in its Riemannian geometry version 

 

Figure 7 from [2]: According to eq. (1), the entanglement entropy of the region A is given by the 

maximum flux through A of any flow. A maximizing flow v(A) is illustrated by its flow lines in blue. 

This flux will equal the area of the RT minimal surface m(A) (divided by NG4 ). 

2. MORE ABOUT BIT THREADS 

As with an electric, magnetic, or fluid velocity field, it is convenient to visualize the flow v by its field 
lines. These are defined as a set of integral curves of v chosen so that their transverse density equals 

v . In [11] they call these flow lines “bit threads”, for a reason that will become clear soon. Please 

keep in mind that the threads are oriented. 

The bit threads inherit two important properties from the definition of a flow. First, the bound 

nGv 41  means that they cannot be packed together more tightly than one per 4 Planck areas. Thus 

they have a microscopic but nonetheless finite thickness. In general, their density on macroscopic (i.e. 

AdS) scales will be of order 
2N  (in the usual gauge/gravity terminology). Therefore, unless they are 

interested in 1=N effects (which will mostly ignore in this paper), it should not worry too much about 

the discrepancy between the continuous flow and the discrete threads. Second, the condition 0 v  

means that the threads cannot begin, end, split, or join in the bulk; each thread can begin and end only 
on a boundary, which could be the conformal boundary where the field theory lives, or possibly a 

horizon (e.g. if  are considering a single-sided black hole spacetime). 

One of the most remarkable discoveries in fundamental physics was the realization that black hole 

horizons carry entropy. This entropy is manifest in the spacetime geometry, as expressed by the 

Bekenstein-Hawking formula: 
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Where A is the area of the horizon. 

Following [8a, b, c] of course, this expression (2) also reminds us that the physical constants in Nature 

can be combined to yield a fundamental length, the Planck scale: 
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spacetime dimensions. Hence the geometric entropy (1) of the horizon is simply the horizon area 
measured in units of the Planck scale: 
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Given a particular holographic framework, the entanglement entropy in the (d-1)-dimensional 
boundary theory between a spatial region A and its complement is calculated by extremizing the 

following expression 
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over (d-2)-dimensional surfaces v in the bulk spacetime which are homologous to the boundary region 

A.  

In the following, we summarize here the main points of the derivation as given in Ref.[3]. Thus, the 
variation of the entanglement entropy obeys 

AA HS                                                                                                                                         (3) 

Where AH  is the modular Hamiltonian.  

However, starting from the vacuum state of a CFT in flat space and taking A to be a ball-shaped 

spatial region of radius R centered at 0x , denoted ),( 0xRB , the modular Hamiltonian is given by a 

simple integral that  takes the simple form 
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of the energy density over the interior of the sphere (weighted by a certain spatial profile). 

Thus, given any perturbation to the CFT vacuum that have for any ball-shaped region 
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where BH  and BS  denote the modular Hamiltonian and the entanglement entropy for a ball, 

respectively. 

One example is when is to consider a conformal field theory in its vacuum state, 00total  in d-

dimensional Minkowski space, and choose the region A to be a ball ),( 0xRB  of radius R on a time 

slice 0tt   and centered at 
ii xx 0 . 

Hamiltonian takes the simple form 
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where T  is the stress tensor. 

In summary, starting from the vacuum state of any conformal field theory and considering a ball-

shaped region B, the first law (3) simplifies to 

BB ES                                                                                                                                               (5) 

where is defined 
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The gravitational version of EB is simply obtained by replacing the stress tensor expectation value in 

(4) or (6) with the holographic stress tensor 
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giving 
grav

BE  an integral of a local functional of the asymptotic metric over the region ),( 0xRB  at 

the AdS boundary. 

To convert the nonlocal integral equations into a local equation, the strategy is to make use of the 

machinery used by Iyer and Wald to derive the first law from the equations of motion. 

The Iyer-Wald formalism is reviewed in detail in the next section, but for now is just need one fact: 

the crucial step in the derivation is the construction of a (d−1)-form   that satisfies 

 
B

grav

BE ,  
B

grav

BS                                                                                                               (7) 

and for which 0d  on shell (i.e. when the gravitational equations of motion are satisfied). 

The first law follows immediately by writing 

  0d  and applying Stokes theorem (i.e. integrating by parts). 

To derive local equations from the gravitational first law, they show that there exists a form   which 

satisfies the relations (7) off shell, and whose derivative is 

bg

ab

a
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Where the d-form 
b  is the natural volume form on co-dimension one surfaces in the bulk (defined in 

eq. (5.3) from [3]), B  is the Killing vector that vanishes on ),(
~

0xRB , and 
g

abE are the linearized 

gravitational equations of motion. In addition, they require that 

0Md                                                                                                                                             (9) 

where ∂ M is the AdS boundary, assuming the tracelessness and conservation of the holographic stress 

tensor. 

In detail in [3], by using the No ether identity (discussed in appendix B of [3]) linearized about the 

AdS background is obtained. 

0)(  abg

a E ,                                                                                                                                (10) 

a divergenceless condition  as the necessity mentioned before. 

Using the vanishing of 
gE , the general solution to (10) can be written as: 
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for unfixed C , zC  which are functions of the boundary coordinates. It simply need to show that C ,

zC   must vanish. This is achieved by the requirement (9) which (using eq. (8) and (11) gives: 
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Here, is defined )(2)(lim
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   which is related to the boundary conformal 

Killing vector via: 
z

BBB  

~
2)()(  . Since it is possible to construct _ for all 

possible boundary regions B and in all Lorentz frames, it follows that 0 zCC . 

In summary, it can obtain the full set of linearized gravitational equations, if it can show that a form 

  exists, which satisfies eqs. (7), (8) and (9), they in [3] found this. Thus, applying this discussion in 

an arbitrary frame, after a long way they have now established that, at the boundary,   is equal to the 

conserved current that appears in the modular energy:  
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Conservation and traceless of the CFT stress tensor therefore imply 0Md , completing the 

derivation requested. 

Now, only the differential form for Gauss's law for magnetism is of this type: 

0 B                                                                                                                                              (14) 

The magnetic field B, like any vector field, can be depicted via field lines (also called flux lines) – that 
is, a set of curves whose direction corresponds to the direction of B, and whose areal density is 

proportional to the magnitude of B. Gauss's law for magnetism is equivalent to the statement that the 

field lines have neither a beginning nor an end: Each one either forms a closed loop, winds around 
forever without ever quite joining back up to itself exactly, or extends to infinity.  

To note, that in case of electroweak and QCD epochs the magnetogenesis is analyzed for different 

mechanisms [12], [13], [14], [16], [5], [24], [25]. 

3. MAGNETIC FIELD GENERATION AT THE CONFINEMENT MECHANISM 

At present, we have no analytic proof of the existence of the condensate of abelian magnetic 

monopoles in gluodynamics and in chromodynamics. 

However, there are two large gaps between QCD and the dual-superconductor picture [12]. 

1. The dual-superconductor picture is based on the Abelian gauge theory subject to the Maxwell type 

equations, while QCD is a non-Abelian gauge theory. 

2. The dual-superconductor picture requires color-magnetic monopole condensation as the key 
concept, while QCD does not have such a monopole as the elementary degrees of freedom.  

In [31] is found another confinement mechanism. In this note, where is sown  that the dual Meissner 

effect in an Abelian sense works good even when monopoles do not exist, performing Monte-Carlo 

simulations of quenched SU(2) QCD with Landau gauge fixing. Instead of monopoles, time-
dependent Abelian magnetic fields regarded as magnetic displacement currents are squeezing Abelian 

electric fields. The dual Meissner effect leads us to the dual London equation and the mass generation 

of the Abelian electric fields which suggests the existence of a dimension 2 gluon condensate. The 
present numerical results, hence, suggest the Abelian dual Meissner effect is the real universal 

mechanism of color confinement which has been sought for many years. Moreover the relation of the 

Abelian dual Meissner effect with the dimension 2 gluon condensate sheds new light on the 
importance of the gluon condensate, cited [13, 14, 15, 16, 17].  

Hence, the Abelian fields satisfy kinematically the simple Abelian Bianchi identity 

a

A

a

A BE


4               0 a

AB


                                                                                                  (15) 

The dual Meissner effect says that the squeezing of the electric flux occurs due to cancellation of the 

Coulombic electric fields and those from solenoidal magnetic currents. 

Now what happens in a smooth gauge like the Landau gauge where monopoles do not exist? From 

Eq.(15), only AB


4  regarded as a magnetic displacement current could play the role of the solenoidal 

current. 

It is very interesting to see Fig.4 from [31], in which this happens actually in Landau gauge. Note that 

the solenoidal current has a direction squeezing the Coulombic electric field. Let us see also the 
detailed distributions shown in Fig.5 from [31]. The other components of the magnetic displacement 

current ArB4  and AzB4  are not vanishing but they are much suppressed consistently with Fig.2 

from [31]. In comparison, we show the case of MA gauge also in Fig.5 of [31]. 

Now they have shown that the magnetic displacement currents are important in the dual Meissner 
effect when there are no monopoles. Then how can we understand the origin of the dual Meissner 

effect without monopoles?. The Abelian dual Meissner effect indicates the massiveness of the Abelian 

electric field as an asymptotic field. 
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4. DIMENSION 2 GLUON CONDENSATE 

Now in [31] is shown that the magnetic displacement currents are important in the dual Meissner 

effect when there are no monopoles. Then how can we understand the origin of the dualMeissner 

effect without monopoles? The Abelian dualMeissner effect indicates the massiveness of the Abelian 
electric field as an asymptotic field: 

0)( 22  AEm


                                                                                                                               (16) 

This leads us to a dual London equation which is a key to the dual Meissner effect. Let us evaluate the 

curl of the magnetic displacement current. Using Eq.(15), we get 
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From Eq.(16), we get the dual London equation: 
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Neglecting gauge-fixing and Fadeev-Popov terms, we have equations of motion 0babFD   and the 

(non-Abelian) Bianchi identity 0 abab FD  . Applying D operator to the Bianchi identity and using 

the Jacobi identity and the equations of motion, we get 
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Hence if 02 vAA abba

   we see asymptotically that the electric fields become massive 
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kEm  with 
222 8 vgm   as in [30]. Now the Abelian electric field is also massive 

asymptotically 0)( 22  a

AkEm . Hence the dual London equation (23) is obtained. 

Most estimates in the literature refer to the gluon mass, related to the 
222
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3
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Finally, we have the above RT formula as expressed in the bit threads:  
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With data for the confinement epoch we have  
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, that results  

from eq. (20)
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, which corresponds with the above value of 
][1740 mH 
, as given 

bellow eq. .  
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In the case of a homogeneous potential directed along the z-axis [12] eq. (2.2), the Einstein stress-

energy tensor is: 






8
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TTTT  ; 00 iT ,  where ][ 3mJB -the magnetic energy 

density. 

][
8

22

0 JVV
BcV

vol

vol  



 ,                                  

38)4(2 CCcCvolV   , at Compton length equally with the penetration length  C , that 

results 

3

0

2

)(

)(



e

C

V
E


                                                              

With gluonsV   as above is obtained cEB qq . 
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Here, the Hubble constant is defined as, see eq. (3.20, 3.21, 3.22) from [12]. 
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Now, the rate per unit volume of quarks pair creation   is given by using the Schwinger effect   

inside the nucleon or EW bubbles,  when this electric field E  is induced by 
 ee quarks pairs 

which
 decay in 

W that explaining 
 decay,  of leading order behavior  

                                                                                (22)      

or , positron charge , mass , Compton wave-length mcC    and so-called 

“critical” electric field  

                                                                                    

the volume is given by:  
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The strain at Earth surface 

5. STRAIN MODEL 

From [36] we have: 
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We will assume that )(vTvv  represents ingoing radiation which changes the black hole’s mass by only 

a small fractional amount, MM  . We can then take κ to be constant to lowest order. If we 

change the independent variable from λ to v = t + r∗, then 

dv

d
e

d
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For spherically symmetric pulses, the shear and vorticity vanish, and the Raychaudhuri equation, Eq. 
(36) from [36], becomes 
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The equation for the horizon area can be expressed as 
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In this approximation, the change in the mass of the black hole is 
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where we have used )4(1)4(1 0MM  . 

This agrees with the result obtained by calculating the change in mass directly from Eq. (23) as  
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Here, it was defined an “effective magnetic field", effB , in terms of the total energy density in the 

magnetic field of MF Vortex,  
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On the horizon, vv

r

t TT  ,  Mr 2  

Since the quarks generated inside nucleons or in EW bubbles are generated by a pulsating process 

with frequency
1v , a such pulse of stress-energy it could be )(8  

 akkT  , a  is a 

positive constant, and the surface gravity ][ 1
3

 s
GM

c
 . 

We can observe that 
R

r

Rc

GM

A

A Schw
 18

2


, or, we have obtained the classical formula for 

deformation. 

The build of spacetime is obtained by using well-known Inflation models [34a,b], which in our 

opinion is nothing else than a spreading of entanglement-energy source-horizon end, where the scale 
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leaving the horizon at a given epoch is directly related to the number )(N of e -folds of slow-roll 

inflation that occur after the epoch of horizon exit. Indeed, since H -the Hubble length is slowly 

varying, we have Hdt
a

dta
adaHdkd 


ln))(ln(ln . From the definition this gives 

)(ln dNkd  , and therefore )()ln( Nkkend  , or, ][mkek N

end  , where endk  is the scale 

leaving the horizon at the end of slow-roll inflation, or usually  ][11 mkk end

  ,  the correct equation 

being ][ 1 mekk N

end .  

During Universe evolution, the horizon leave is when 1 leaveleaveleave Hka , and 

][10 1811 mHk leaveleave

  . 

From (18) we have at hologram site  
JGeVaendQCD

122 104.410277.0   ; 25enda ; 

][105.2 51 mkend 
, with eq. (20) ; mR 6101.7  , and ][105.6 61 mH end 

,  

scHt endend 02.01  
, 

15107.6 C ; ][10 1811 mkH leaveleave

   we found 9.53N   

6. THE STRAIN AT EARTH SURFACE-LIGHT BENDING 

We use the above model 

With ][ 1 s
R

c
a  ; where ][105.6 6 mR  ; 45a ; with ][101 24 kgM  ; ][10 118  s ; if 

we have the  generation eq. (22) , 
11 )(   volVVRv  ; where  

][103.6102 114357  sVVR Cvol  ,  

][105.1 15 sv  ; 0.1ve
. 

In other words the pulse is transferred from nucleons via electromagnetic field as bit threads to CFT 

viewed as a hologram, that it means the greater contribution to expansion. 

So, the deformation is 
10108.6 



A

A
 , or the expansion due of EW epoch since continue till today 

since ][104.4108.6 310 mAA   , that corresponds with well known Einstein ring, here 

][105.6 61 mRHA  
. 

To note, that the gravitational potential for Earth is J
R

GM
U

Earth

Earth 32

2

106.3  ; the   stress-energy 

tensor  is: JnUT nucleonsj

128 102.41044.1   
; 

5127 10610  

Earthnucleons Mn
 

7. CONCLUSIONS 

In this work are confirmed the following models: 

-author’ model of electromagnetic fields in nucleon, 

-the origin of the gravitational potential, 

-the Schwinger effect to create particles inside nucleons, 

-the holographic derivation of entanglement for structured matter objects, 

-the origin of the deformation of the horizon for structured matter objects, 

-the lensing effect due of magnetic flux passing the hologram-CFT. 
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