

Universe Horizon

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: The universe in the light of diverse untouchable mass and wavelength has been discussed.

Keywords: Diverse untouchable mass and wavelength, mass and size of the universe

1. INTRODUCTION

The universe in the light of diverse untouchable mass and wavelength will be discussed.

2. THE MASS AND CO-MASS OF THE OBSERVABLE UNIVERSE

The mass value of the observable universe can be offered as the average of ten estimates of the total mass of the observable universe $m_1 = 2.9 \times 10^{54} kg$ [1].

In Heraclitean dynamics the co-mass m_2 can be attributed to the mass m_1 on the energy sustainable way so that the geometric mean of two masses gives the diverse untouchable mass m which nominally equals the factor $\sqrt{\frac{h}{c}}$ [2]:

$$m = \sqrt{m_1 m_2} = \sqrt{\frac{h}{c}}.$$

Here h and c is Planck constant and the speed of light, respectively.

Applying the equation (1) the co-mass of the observable universe m_2 is given:

$$m_2 = \frac{h}{c} \frac{1}{m_1} = 7.6 \ x \ 10^{-97} kg. \tag{2}$$

3. THE WAVELENGTH OF THE MASS AND WAVELENGTH OF THE CO-MASS OF THE OBSERVABLE UNIVERSE

The wavelength of the mass of the observable universe is the next:

$$\lambda_1 = \frac{h}{c} \frac{1}{m_1} = 7.6 \ x \ 10^{-97} m. \tag{3}$$

It nominally equals the co-mass of the observable universe m_2 .

And the wavelength of the co-mass of the observable universe is the next:

$$\lambda_2 = \frac{h}{c} \frac{1}{m_2} = 2.9 \ x \ 10^{54} \ m.$$
(4)

It nominally equals the mass of the observable universe m_1 .

Thus the concerned nominal equality holds for the wavelength λ of the untouchable mass *m*, too:

$$\lambda = \sqrt{\lambda_1 \lambda_2} = \sqrt{\frac{h}{c}}.$$
(5)

4. THE SIZE OF THE OBSERVABLE UNIVERSE

The wavelength λ_2 of the co-mass m_2 of the observable universe can be regarded as the true range of the present universe. It is much bigger than the known diameter of the observable universe [3]:

$$\lambda_2 = 2.9 \, x \, 10^{54} \, m \gg d_{observable \, universe} = 8.8 \, x \, 10^{26} m. \tag{6}$$

5. CONCLUSION

Modesty seems to broaden horizons

DEDICATION

To modesty [4]

REFERENCES

[1] Janez Špringer (2022) "Dunbar's Number and Prime Structure of Observable Universe" International Journal of Advanced Research in Physical Science (IJARPS) 9(10), pp.1-4, 2022.

[2] Janez Špringer (2022) "Diverse Untouchable Mass in Heraclitean Dynamics (Counting on Double Surface)" International Journal of Advanced Research in Physical Science (IJARPS) 9(11), pp.17-22, 2022.

[3] Janez Špringer (2023) "About Diameter of Observable Universe" International Journal of Advanced Research in Physical Science (IJARPS) 10(7), pp.1-2, 2023.

[4] (7) What is the difference between being modest and being humble? - Quora, Retrieved July 2023

Citation: Janez Špringer (2023) "Universe Horizon" International Journal of Advanced Research in Physical Science (IJARPS) 10(7), pp.3-4, 2023.

Copyright: © 2023 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.