

Balanced Complex Ground Mass in Modified Heraclitean Dynamics

Janez Špringer*

Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

*Corresponding Author: Janez Špringer, Cankarjeva cesta 2, 9250 Gornja Radgona, Slovenia, EU

Abstract: Balanced complex ground mass in modified Heraclitean dynamics has been discussed.

Keywords: modified Heraclitean dynamics, balanced complex ground mass

1. INTRODUCTION

In the previous paper [1] it was mentioned that the balanced complex ground mass being at rest in the fairy world can lose its imaginary mass and become solely real at superluminal speed $a_{maximum(\mathbb{R})}^{balanced} = 1.123581020 c$. In this article we will try to justify why the balanced complex ground mass should remain in fairy world.

2. THE COMPLEX GROUND MASS

The complex ground mass $m_{ground(\mathbb{C})}$ consists of a real part $m_{ground(\mathbb{RC})}$ as well as of an imaginary part $m_{ground(i\mathbb{RC})}$:

$$m_{ground(\mathbb{C})} = m_{ground(\mathbb{RC})} + im_{ground(i\mathbb{RC})}.$$
(1)

Both parts of concerned mass without kinetic energy are related to the maximal speed which the ground mass can achieve in the complex world of subluminal speeds [1]:

$$0 < a_{maximum(\mathbb{C})} = \frac{v_{maximum(\mathbb{C})}}{c} < 1.$$
⁽²⁾

As follows:

$$m_{ground(\mathbb{RC})} = \sqrt{\frac{h}{c}} \sqrt{\frac{\left(ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)\right)^{2} + \pi^{2} + ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)}{2}}.$$
(3)

And

$$m_{ground(i\mathbb{RC})} = \sqrt{\frac{h}{c}} \sqrt{\frac{\sqrt{\left(ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^2}\right)\right)^2 + \pi^2 - ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^2}\right)}{2}}.$$
(4)

Here *h* and *c* are Planck constant and speed of light, respectively.

3. THE BALANCED COMPLEX GROUND MASS

Both parts of the balanced complex ground mass are nominally equal, i.e. $m_{ground(\mathbb{RC})} = m_{ground(i\mathbb{RC})}$. So, applying (3) and (4) zero maximum speed of the balanced complex ground mass can be calculated:

$$\sqrt{\frac{h}{c}} \sqrt{\frac{\left(ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)\right)^{2} + \pi^{2}}{2} + ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)}}{2} = \sqrt{\frac{h}{c}} \sqrt{\frac{\sqrt{\left(ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)\right)^{2} + \pi^{2}} - ln\left(\frac{1}{1-a_{maximum(\mathbb{C})}^{2}}\right)}{2}}{2}}$$

And

 $a_{maximum(\mathbb{C})}^{balanced} = 0.$

(5)

Inserting zero maximum speed (5) in the equation (3) and (4) the balanced complex ground mass is given:

$$m_{ground(\mathbb{C})}^{balanced} = m_{ground(\mathbb{RC})}^{balanced} + m_{ground(i\mathbb{RC})}^{balanced} = \sqrt{\frac{\pi}{2}} \sqrt{\frac{h}{c}} + i\sqrt{\frac{\pi}{2}} \sqrt{\frac{h}{c}}.$$
(6)

Using relations between maximum, ground and minimum speed [2] it can be stated that the balanced complex ground mass is inert, since its ground speed is zero, too:

$$a_{ground(\mathbb{C})}^{balanced} = \sqrt{\frac{1}{\ln\left(\frac{1}{\left(a_{maximum(\mathbb{C})}^{balanced}}\right)^2 - 1} + 1\right)}} = \sqrt{\frac{1}{\ln\left(\frac{1}{0 - 1} + 1\right)}} = 0.$$
(7)

But its minimum speed is negatively infinite:

$$a_{\mininmum(\mathbb{C})}^{balanced} = a_{maximum(\mathbb{C})}^{balanced} - \frac{1}{a_{maximum(\mathbb{C})}^{balanced}} = 0 - \frac{1}{0} = -\infty.$$
(8)

Indicating that the balanced complex ground mass could be a carrier of zero time which encompasses the past indicating that in the zero time of complex world the past is preserved. And that the future emerges from that preservation.

4. CONCLUSION

Without the past there is no present or future.

DEDICATION

To happy life [3]

REFERENCES

[1] Janez Špringer (2023) "Imaginary Background of Universe Expansion (A Fairy Tale)" International Journal of Advanced Research in Physical Science (IJARPS) 10(5), pp.17-26, 2023.

[2] Janez Špringer, (2019). Neutrino Relativistic Energy in Heracletean World (Second Side of Fragment). International Journal of Advanced Research in Physical Science (IJARPS) 6(5), pp.1-3, 2019.

[3] https://theyogainstitute.org/checklist-for-a-happy-life/

[4] Sorokowski, Randy. (2021). A Derivation of the Higgs Field and the Mass of the Higgs Boson. 10.13140/RG.2.2.30119.37282. Sorokowski, Randy. (2021).

APPENDIX

Let us in the field of ideas introduce the interesting ratio of balanced complex ground mass to mass of W boson in MS system of physical units [4]. Thus:

halancod	$\int \overline{\pi} h $	π . 6,626 070 04 . 10^{-34}	-	
$m_{ground(\mathbb{RC})}^{bullinceu}$	$\sqrt{2}\sqrt{c}$	$\sqrt{2.2,99792458.10^8}$	$-12000662 \sim 12000 + 2$	(a)
m _{W boson} -	$-\frac{1.433217602.10^{-25}kg}{1.433217602.10^{-25}kg}$	1.433 217 602 . 10 ⁻²⁵	$= 13000.002 \approx 13000 + \frac{1}{3}$	<i>(u)</i>

Be polite. It is just a pudding of unknown taste.

Citation: Janez Špringer (2023) "Balanced Complex Ground Mass in Modified Heraclitean Dynamics" International Journal of Advanced Research in Physical Science (IJARPS) 10(6), pp.1-3, 2023.

Copyright: © 2023 Authors, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.